Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    2-Prime ideals and their applications

    This paper introduces the notion of 2-prime ideals, and uses it to present certain characterization of valuation rings. Precisely, we will prove that an integral domain R is a valuation ring if and only if every ideal of R is 2-prime. On the other hand, we will prove that the normalization ¯R of R is a valuation ring if and only if the intersection of integrally closed 2-prime ideals of R is a 2-prime ideal. At the end of this paper, we will give a generalization of some results of Gilmer and Heinzer by studying the properties of domains in which every primary ideal is an integrally closed 2-prime ideal.

  • articleNo Access

    The Ohm–Rush content function II. Noetherian rings, valuation domains, and base change

    The notion of an Ohm–Rush algebra, and its associated content map, has connections with prime characteristic algebra, polynomial extensions, and the Ananyan–Hochster proof of Stillman’s conjecture. As further restrictions are placed (creating the increasingly more specialized notions of weak content, semicontent, content, and Gaussian algebras), the construction becomes more powerful. Here we settle the question in the affirmative over a Noetherian ring from [N. Epstein and J. Shapiro, The Ohm-Rush content function, J. Algebra Appl.15(1) (2016) 1650009, 14 pp.] of whether a faithfully flat weak content algebra is semicontent (and over an Artinian ring of whether such an algebra is content), though both questions remain open in general. We show that in content algebra maps over Prüfer domains, heights are preserved and a dimension formula is satisfied. We show that an inclusion of nontrivial valuation domains is a content algebra if and only if the induced map on value groups is an isomorphism, and that such a map induces a homeomorphism on prime spectra. Examples are given throughout, including results that show the subtle role played by properties of transcendental field extensions.