Please login to be able to save your searches and receive alerts for new content matching your search criteria.
With a first-principles method based on density functional theory, the effect of the alloying element titanium (Ti) on the thermodynamic stability and electronic structure of hydrogen (H) in pure vanadium (V) is investigated. The interactions between H and the vacancy and the defect solution energies in a dilute V–Ti binary alloy are calculated. The results show that: (i) a single H atom prefers to reside in a tetrahedral interstitial site in dilute V–Ti binary alloy systems; (ii) H atoms tend to bond at the vacancy sites; a mono-vacancy is shown to be capable of trapping three H atoms; and (iii) the presence of Ti in pure V can increase the H trapping energy and reduce the H trapping capability of the vacancy defects. This indicates that doping with Ti to form dilute V–Ti binary alloys can inhibit the solution for H, and thus suppress the retention of H. These results provide useful insight into V-based alloys as a candidate structural material in fusion reactors.
The technique of X-ray photoelectron spectroscopy has been used to investigate the chemical reactivity at the metal/CuO interfaces. Thin films of the metallic overlayer (0.5 nm, 1.0 nm and 2.0 nm thickness) were deposited on copper oxide substrates at room temperature. In situ characterization of the interfaces has been performed. The 2p core level regions of the metals have been investigated. The spectral features show considerable reactivity at the interfaces. The core level peaks of the metal are observed to be shifted to the high BE energy side with the appearance of satellites. The spectral data confirm the formation of the metallic oxide at the interface. The satellite structure in the copper region is observed to disappear and the spectral features are found to approach those of elemental copper. The room temperature deposition of the metal on copper oxide therefore results in the reduction of copper oxide to elemental copper followed by the oxidation of the metal. The interface is found to consist of a mixture of metal oxide and elemental copper. The 2.0 nm samples were annealed. These samples show the diffusion of copper oxide through the overlayer. The metal reacts with this diffusing oxide to form metallic oxide. The interface is found to consist of a mixture of unreacted metal, the metal oxide, and elemental copper. The amount of the unreacted metal varied between 0% and 40% and can be controlled by the processing conditions. The investigation shows room temperature chemical reactivity at the metal/CuO interface and provides a new method of preparing sub-nano-oxide films.
We have investigated the effect of impurity X (X = C and O) atoms on the behavior of hydrogen in vanadium, which is an ideal structural material for nuclear fusion reactors, by first-principles calculations. We found that (1) in bulk V, the interaction between an interstitial H atom and an X atom is repulsive, and the interaction with O is much stronger than that with C. (2) The X–vacancy (vac) cluster can act as a center for capturing H in V. The C-vac cluster can trap as many as two H atoms, while the O–vac cluster can capture up to four H atoms. (3) C and O impurities can effectively decrease the trapping energy of a single H atom in a vacancy. The H-trapping energies in the C–vac and O–vac complexes are 0.88 eV and 0.46 eV, respectively, both of which are lower than those in the X-free vacancy. (4) Both H–X and X-metal interactions affect the H solubility in V. The above results provide important information for application of vanadium as a structural material for nuclear fusion tokamaks.
The catalytic functionalization of C–H, C–OH and C–C bonds belongs to the most important processes in nature and the industry. In nature, this process occurs via involvement of enzymes, effectively and selectively, usually with very high turnover numbers. The pivotal role in enzymatic activity is played by the metal center cofactors, which involve several bioavailable transition metals, such as, iron, copper, manganese and zinc. In the industry, bond functionalization requires the presence of metal catalysts; therefore, a bio-inspired design of metal catalysts is a challenging approach. The recent advances in the catalysis of industrially important reactions, namely the oxidation and hydrocarboxylation of alkanes, the oxidation of alcohols and C–C coupling are reported. Convenient, environmentally friendly methods are presented, and the role and efficacy of the various transition-metal (iron, copper, zinc, manganese, nickel, vanadium, palladium and cobalt) catalysts are explored.