Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This study explores heat and mass transport in natural convection of Casson fluid in a vertical annulus via porous medium. Impacts of thermal radiation, heat source and chemical reaction are taken into consideration. The equations representing the model reduced into nondimensional ordinary differential equations under adequate transformations are solved analytically. Closed form solutions are obtained for the problem in terms of Bessel’s functions. Influences of various arising parameters such as porous medium parameter, heat generation, thermal radiation, thermal Grashof number, solutal Grashof number, etc. on flow, temperature and concentration fields are exhibited by graphs and discussed. Also, we have solved the problem numerically on MATLAB software employing the bvp4c technique along with shooting technique. The exact and numerical solutions compared found a good match. Moreover, the effects of numerous parameters on quantities of physical importance such as skin-friction coefficient, Nusselt number and Sherwood number are also portrayed and discussed. Heat exchangers, energy storage systems such as batteries and inverters, thermal storage and thermal protection systems are some examples of applications of the study.
Conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically. The governing equations are discretized on a staggered mesh and are solved using a pressure-correction algorithm. A parametric study is performed by varying the Grashof number, aspect ratio, and the solid-to-fluid thermal conductivity ratio over wide ranges with the Prandtl number fixed at 0.7. Results are presented for the variation of several quantities of interest such as the local Nusselt numbers on the inner and outer boundaries, the axial variation of the centerline and interface temperatures, maximum solid, average solid and average interface temperature variations with Grashof number, and the average Nusselt number variation for the inner and outer boundaries with Grashof number. The average Nusselt number from the conjugate analysis is found to be between the Nusselt numbers of the isothermal and the isoflux cases. The average Nusselt numbers on the inner and outer boundaries show an increasing trend with the Grashof number. Correlations are presented for the Nusselt number and the dimensionless temperatures of interest in terms of the parameters of the problem.