Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Parameter Identification of a Large-Scale Vibroacoustic Finite Element Model with a One-Dimensional Convolutional Neural Network

    Uncertainties are significant in the early vibroacoustic development, e.g., of a car body, to prevent costly modifications close to the start of production. First, engineers must know which uncertain parameters are sensitive: Our previous work identified 170 uncertain parameters being sensitive out of a complex finite element model with 1,300 uncertain parameters – a parameter reduction of approximately 87%. Second, engineers aim to find reliable distributions of these sensitive input parameters for finite element simulations. Finding these distributions is very demanding in a large-scale vibroacoustic model with several connecting parameters, as research already acknowledges regarding simplified connections. In this paper, we address this challenge with neural networks. For this, we use data in the frequency domain. Due to the curse of dimensionality, it is difficult to determine the parameter set of 170 parameters with a neural network. Therefore, we examine the influence of the number of parameters on the performance of neural networks. Furthermore, we train a fully connected feed-forward neural network and compare this to a one-dimensional convolutional neural network. The latter exhibits a better performance. Finally, we show how to determine distributions of the analyzed parameters based on artificial measurement data. Due to this process, we can significantly improve our finite element simulations and show how to deal with the challenge of determining uncertain parameters in a large-scale vibroacoustic finite element model based on data in the frequency domain.