Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We generalize the descriptions of vortex moduli spaces in [4] to more than one section with adiabatic constant s. The moduli space is topologically independent of s but is not compact with respect to C∞ topology. Following [17], we construct a Gromov limit for vortices of fixed energy, and attempt to compactify the moduli space via bubble trees with possibly conical bubbles (or raindrops).
In this paper we study gauge theory on -equivariant bundles over X × ℙ1, where X is a compact Kähler manifold, ℙ1 is the complex projective line, and the action of
is trivial on X and standard on ℙ1. We first classify these bundles, showing that they are in correspondence with objects on X — that we call holomorphic chains — consisting of a finite number of holomorphic bundles ℰi and morphisms ℰi → ℰi-1. We then prove a Hitchin–Kobayashi correspondence relating the existence of solutions to certain natural gauge-theoretic equations and an appropriate notion of stability for an equivariant bundle and the corresponding chain. A central tool in this paper is a dimensional reduction procedure which allow us to go from X × ℙ1 to X.