Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In [M. Berbec and S. Vaes, W*-superrigidity for group von Neumann algebras of left–right wreath products, Proc. London Math. Soc.108 (2014) 1116–1152] we have proven that, for all hyperbolic groups and for all nontrivial free products Γ, the left–right wreath product group 𝒢 ≔ (ℤ/2ℤ)(Γ) ⋊ (Γ × Γ) is W*-superrigid, in the sense that its group von Neumann algebra L𝒢 completely remembers the group 𝒢. In this paper, we extend this result to other classes of countable groups. More precisely, we prove that for weakly amenable groups Γ having positive first ℓ2-Betti number, the same wreath product group 𝒢 is W*-superrigid.
We survey some of the progress made recently in the classification of von Neumann algebras arising from countable groups and their measure preserving actions on probability spaces. We emphasize results which provide classes of (W*-superrigid) actions that can be completely recovered from their von Neumann algebras and II1 factors that have a unique Cartan subalgebra. We also present cocycle superrigidity theorems and some of their applications to orbit equivalence. Finally, we discuss several recent rigidity results for von Neumann algebras associated to groups.