Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A LOW POWER PUSH–PUSH VCO USING MULTI-COUPLED LC TANKS

    A fully integrated push–push voltage controlled oscillator (VCO) working in K-band with a large tuning range and a low phase noise fabricated in a 0.18 μm SiGe BiCMOS technology is presented. Multi-coupled LC tanks are used to improve the tuning range, power consumption and phase noise. Digital tuning varactors are used to maintain a low VCO tuning sensitivity (KVCO) and maximum frequency overlap. The VCO achieves a frequency tuning range (FTR) of 17% at 12 GHz, a phase noise of -106.62 dBc/Hz at 1 MHz offset and consumes 7 mW from 1.8 V supply.

  • articleNo Access

    A Bandwidth and Frequency Calibration Method for OOK UWB-IR Transmitter with High Energy Efficiency

    In this paper, an offline bandwidth and frequency calibration method for an on–off LC oscillator-based ultra-wideband impulse radio (UWB-IR) transmitter is presented. Implemented in 0.18-μm CMOS, the offline calibration circuits consume very little power. This allows the transmitter to consume an ultra-low average power of 319μW over 3–5GHz at 2Mbps. The calibration is critical to ensure the FCC spectral mask compliance despite the process–voltage–temperature (PVT) variations. The transmitter can deliver a large differential output swing of 1.8–3V to a 100-Ω load with minimal power efficiency of 7% at different data rates (2–30Mbps). It is suitable for WPAN application with localization and positioning capabilities.

  • chapterNo Access

    HETEROGENEOUS NETWORK ESTABLISHMENT ASSISTED BY CELLULAR OPERATORS

    In this paper, we describe a novel architecture to enable a secure communication among mobile devices using different wirelesstechnologies like wireless LAN, Bluetooth, cellular systems or even infrared. Making use of the combination of these technologies for the data transmission and for the signaling of the communication, we analyze several scenarios with increasing complexity. The complete picture appears in the last scenario where all technologies are involved and the network is composed of heterogeneous mobile nodes. The paper also presents a solution for the setup of a secured communication channel (i.e. a Virtual Private Network connection) between several heterogeneous mobile nodes controlled by the cellular network operator. The mobile nodes can be either cellular aware or non-cellular aware in this framework. We propose to setup the heterogeneous network communications via the cellular network using the cellular aware nodes.