Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Corrected First-Order Derivative ISPH in Water Wave Simulations

    The smoothed particle hydrodynamics (SPH) method is a meshless numerical modeling technique. It has been applied in many different research fields in coastal engineering. Due to the drawback of its kernel approximation, however, the accuracy of SPH simulation results still needs to be improved in the prediction of violent wave impact. This paper compares several different forms of correction on the first-order derivative of ISPH formulation aiming to find one optimum kernel approximation. Based on four benchmark case analysis, we explored different kernel corrections and compared their accuracies. Furthermore, we applied them to one solitary wave and two dam-break flows with violent wave impact. The recommended method has been found to achieve much more promising results as compared with experimental data and other numerical approaches.