Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper is concerned with the initial value problem (IVP) associated to the coupled system of supercritical nonlinear Schrödinger equations
In this paper, we investigate the existence, uniqueness, and asymptotic behaviors of mild solutions of parabolic evolution equations on complex plane, in which the diffusion operator has the form ¯□φ=¯D¯D∗, where ¯Df=ˉ∂f+φˉzf, the function φ is smooth and subharmonic on ℂ, and ¯D∗ is the formal adjoint of ¯D. Our method combines certain estimates of heat kernel associating with the homogeneous linear equation of Raich [Heat equations in ℝ×ℂ, J. Funct. Anal. 240(1) (2006) 1–35] and a fixed point argument.
This paper addresses a one-dimensional differential model describing the super-elastic effect in shape memory alloys. After a preliminary discussion on the model, we focus our attention on the study of the material constitutive relation and prove well-posedness and approximation results for some related initial value problem. Then, we turn our attention to the coupling of the constitutive law with a quasi-static momentum relation and solve the full PDE boundary value problem in one space dimension. In particular, we provide an existence and continuous dependence result and fully develop a spacetime discretization procedure.
A boundary value problem for the time harmonic Maxwell system is investigated through a variational formulation which is shown to be equivalent to it and well-posed if and only if the original problem is. Different bianisotropic materials and metamaterials filling subregions of the problem domain with Lipschitz continuous boundaries are allowed. Well-posedness and finite element approximability of the variational problem are proved by Lax–Milgram and Strang lemmas for a class of material configurations involving bianisotropic materials and metamaterials. Belonging to this class is not necessary, yet, for well-posedness and finite element approximability. Nevertheless, the material configurations of many radiation or scattering problems and many models of microwave components involving bianisotropic materials or metamaterials belong to the above class. Moreover, none of the other available tools commonly used to prove well-posedness seems to be able to cope with the material configurations left out by our treatment.
We study a model of phase segregation of the Allen–Cahn type, consisting in a system of two differential equations, one partial and the other ordinary, respectively interpreted as balances of microforces and microenergy; the two unknowns are the order parameter entering the standard A–C equation and the chemical potential. We introduce a notion of maximal solution to the o.d.e., parametrized on the order-parameter field; and, by substitution in the p.d.e. of the so-obtained chemical potential field, we give the latter equation the form of an Allen–Cahn equation for the order parameter, with a memory term. Finally, we prove the existence and uniqueness of global-in-time smooth solutions to this modified A–C equation, and we give a description of the relative ω-limit set.
In this paper, we consider the compressible Navier–Stokes equation with density-dependent viscosity coefficients and a term of capillarity introduced formally by van der Waals in Ref. 51. This model includes at the same time the barotropic Navier–Stokes equations with variable viscosity coefficients, shallow-water system and the model introduced by Rohde in Ref. 46.
We first study the well-posedness of the model in critical regularity spaces with respect to the scaling of the associated equations. In a functional setting as close as possible to the physical energy spaces, we prove global existence of solutions close to a stable equilibrium, and local in time existence of solutions with general initial data. Uniqueness is also obtained.
In [Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations, Arch. Ration. Mech. Anal.198 (2010) 273–330] the third author has studied in collaboration with Bardos, Catto and Mauser the nonrelativistic multiconfiguration time-dependent Hartree–Fock system of equations arising in the modeling of molecular dynamics. In this paper, we extend the previous work to the case of pseudorelativistic atoms. We show the existence and the uniqueness of global-in-time solution to the underlying system under technical assumptions on the energy of the initial data and the charge of the nucleus. Moreover, we prove that the result can be extended to the case of neutron stars when the number of electrons is less than a critical number Ncr.
Well-posedness of a free boundary problem for electrostatic microelectromechanical systems (MEMS) is investigated when nonlinear bending effects are taken into account. The model describes the evolution of the deflection of an electrically conductive elastic plate suspended above a fixed ground plate together with the electrostatic potential in the free domain between the two plates. The electrostatic potential is harmonic in that domain and its values are held fixed along each plate. The equation for the elastic plate deflection is a parabolic quasilinear fourth-order equation, which is coupled to the gradient trace of the electrostatic potential on the elastic plate.
This paper proposes a survey and critical analysis focused on a variety of chemotaxis models in biology, namely the classical Keller–Segel model and its subsequent modifications, which, in several cases, have been developed to obtain models that prevent the non-physical blow up of solutions. The presentation is organized in three parts. The first part focuses on a survey of some sample models, namely the original model and some of its developments, such as flux limited models, or models derived according to similar concepts. The second part is devoted to the qualitative analysis of analytic problems, such as the existence of solutions, blow-up and asymptotic behavior. The third part deals with the derivation of macroscopic models from the underlying description, delivered by means of kinetic theory methods. This approach leads to the derivation of classical models as well as that of new models, which might deserve attention as far as the related analytic problems are concerned. Finally, an overview of the entire contents leads to suggestions for future research activities.
In this work we investigate a phase field model for damage processes in two-dimensional viscoelastic media with non-homogeneous Neumann data describing external boundary forces. In the first part we establish global-in-time existence, uniqueness, a priori estimates and continuous dependence of strong solutions on the data. The main difficulty is caused by the irreversibility of the phase field variable which results in a constrained PDE system. In the last part we consider an optimal control problem where a cost functional penalizes maximal deviations from prescribed damage profiles. The goal is to minimize the cost functional with respect to exterior forces acting on the boundary which play the role of the control variable in the considered model. To this end, we prove existence of minimizers and study a family of "local" approximations via adapted cost functionals.
This work aims at providing a mathematical and numerical framework for the analysis on the effects of pulsed electric fields on the physical media that have a heterogeneous permittivity and a heterogeneous conductivity. Well-posedness of the model interface problem and the regularity of its solutions are established. A fully discrete finite element scheme is proposed for the numerical approximation of the potential distribution as a function of time and space simultaneously for an arbitrary-shaped pulse, and it is demonstrated to enjoy the optimal convergence order in both space and time. The new results and numerical scheme have potential applications in the fields of electromagnetism, medicine, food sciences, and biotechnology.
In this paper, we introduce a model describing diffusion of species by a suitable regularization of a “forward–backward” parabolic equation. In particular, we prove existence and uniqueness of solutions, as well as continuous dependence on data, for a system of partial differential equations and inclusion, which may be interpreted, e.g. as evolving equation for physical quantities such as concentration and chemical potential. The model deals with a constant mobility and it is recovered from a possibly non-convex free-energy density. In particular, we render a general viscous regularization via a maximal monotone graph acting on the time derivative of the concentration and presenting a strong coerciveness property.
We propose an unconditionally stable numerical scheme for a 2D dynamic Q-tensor model of nematic liquid crystals. This dynamic Q-tensor model is an L2-gradient flow generated by the liquid crystal free energy that contains a cubic term, which is physically relevant but makes the free energy unbounded from below, and for this reason, has been avoided in other numerical studies. The unboundedness of the energy brings significant difficulty in analyzing the model and designing numerical schemes. By using a stabilizing technique, we construct an unconditionally stable scheme, and establish its unique solvability and convergence. Our convergence analysis also leads to, as a byproduct, the well-posedness of the original PDE system for the 2D Q-tensor model. Several numerical examples are presented to validate and demonstrate the effectiveness of the scheme.
We study the reaction–diffusion model that consists of equations that govern the spatio-temporal evolution of sedentary and migrating farmers and hunter–gatherers in the Neolithic transition. Ecologically, the model stems from the fact that a lifestyle of agriculture and settlement, as it allows for a larger population, is evolutionary advantageous than hunting and gathering. Therefore, in our modelling framework, we assume that farmers do not migrate unless the population density pressure forces them. We prove the global well-posedness of the system and, in contrast to the previous modelling work on the transition from hunting and gathering to farming, we show numerically that for a suitable value of a “stay-or-migrate” threshold the model is capable of reproducing the rate of spread of farming that corresponds to the archaeological findings in Europe.
We study the Blackstock equation which models the propagation of nonlinear sound waves through dissipative fluids. Global well-posedness of the model with homogeneous Dirichlet boundary conditions is shown for small initial data. To this end, we employ a fixed-point technique coupled with well-posedness results for a linearized model and appropriate energy estimates. Furthermore, we obtain exponential decay for the energy of the solution. We present additionally a finite element-based method for solving the Blackstock equation and illustrate the behavior of solutions through several numerical experiments.
We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using H(div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the L2-norm of order O(hk+12). We also prove error estimates for the pressure error in the L2-norm.
We introduce a new stochastic differential model for global optimization of nonconvex functions on compact hypersurfaces. The model is inspired by the stochastic Kuramoto–Vicsek system and belongs to the class of Consensus-Based Optimization methods. In fact, particles move on the hypersurface driven by a drift towards an instantaneous consensus point, computed as a convex combination of the particle locations weighted by the cost function according to Laplace’s principle. The consensus point represents an approximation to a global minimizer. The dynamics is further perturbed by a random vector field to favor exploration, whose variance is a function of the distance of the particles to the consensus point. In particular, as soon as the consensus is reached, then the stochastic component vanishes. In this paper, we study the well-posedness of the model and we derive rigorously its mean-field approximation for large particle limit.
A nonlocal Cahn–Hilliard model with a non-smooth potential of double-well obstacle type that promotes sharp interfaces in the solution is presented. To capture long-range interactions between particles, a nonlocal Ginzburg–Landau energy functional is defined which recovers the classical (local) model as the extent of nonlocal interactions vanish. In contrast to the local Cahn–Hilliard problem that always leads to diffuse interfaces, the proposed nonlocal model can lead to a strict separation into pure phases of the substance. Here, the lack of smoothness of the potential is essential to guarantee the aforementioned sharp-interface property. Mathematically, this introduces additional inequality constraints that, in a weak formulation, lead to a coupled system of variational inequalities which at each time instance can be restated as a constrained optimization problem. We prove the well-posedness and regularity of the semi-discrete and continuous in time weak solutions, and derive the conditions under which pure phases are admitted. Moreover, we develop discretizations of the problem based on finite element methods and implicit–explicit time-stepping methods that can be realized efficiently. Finally, we illustrate our theoretical findings through several numerical experiments in one and two spatial dimensions that highlight the differences in features of local and nonlocal solutions and also the sharp interface properties of the nonlocal model.
In this paper, we introduce the problem of parameter identification for a coupled nonlocal Cahn–Hilliard-reaction-diffusion PDE system stemming from a recently introduced tumor growth model. The inverse problem of identifying relevant parameters is studied here by relying on techniques from optimal control theory of PDE systems. The parameters to be identified play the role of controls, and a suitable cost functional of tracking-type is introduced to account for the discrepancy between some a priori knowledge of the parameters and the controls themselves. The analysis is carried out for several classes of models, each one depending on a specific relaxation (of parabolic or viscous type) performed on the original system. First-order necessary optimality conditions are obtained on the fully relaxed system, in both the two- and three-dimensional cases. Then, the optimal control problem on the non-relaxed models is tackled by means of asymptotic arguments, by showing convergence of the respective adjoint systems and the minimization problems as each one of the relaxing coefficients vanishes. This allows obtaining the desired necessary optimality conditions, hence to solve the parameter identification problem, for the original PDE system in case of physically relevant double-well potentials.
This paper proposes a review focused on exotic chemotaxis and cross-diffusion models in complex environments. The term exotic is used to denote the dynamics of models interacting with a time-evolving external system and, specifically, models derived with the aim of describing the dynamics of living systems. The presentation first, considers the derivation of phenomenological models of chemotaxis and cross-diffusion models with particular attention on nonlinear characteristics. Then, a variety of exotic models is presented with some hints toward the derivation of new models, by accounting for a critical analysis looking ahead to perspectives. The second part of the paper is devoted to a survey of analytical problems concerning the application of models to the study of real world dynamics. Finally, the focus shifts to research perspectives within the framework of a multiscale vision, where different paths are examined to move from the dynamics at the microscopic scale to collective behaviors at the macroscopic scale.