Please login to be able to save your searches and receive alerts for new content matching your search criteria.
An experimental investigation of the stability in roll of a square section missile at high incidence was conducted in FL-23 wind tunnel. Dynamic motions were obtained on a square section missile that is free to rotate about its longitudinal axis. Different dynamic rolling motions were observed depending on the incidence of the model sting. These dynamic regimes include damped oscillations, quasi-limit-cycle wing-rock motion, and constant rolling. A coupling numerical method was established by solving the fluid dynamics equations and the rigid-body dynamics equations synchronously in order to predict the onset and the development of uncommented motions and then explore the unsteady movement characteristics of the aircraft. The study indicates that the aircraft loss stability at high incidence is caused by the asymmetric vertex on the level fin tip liftoff and attach alternately. The computation results are in line with the experiment results.
The wing rock phenomenon reduces the maneuverability and affects the flight safety of modern advanced fighters, such as the F-35, which have chined forebodies. Understanding the flow mechanism is critical to suppressing this phenomenon. In this study, experiments were conducted to reveal the motion and flow behavior over a chined forebody configuration. The tests were performed in a wind tunnel at an angle of attack of 50∘ with a Reynolds number of 1.87×105. Reversed limit-cycle oscillation was discovered in the free-to-roll tests. The unstable rolling moment around zero roll angle in the static case suggests that the model tends to be driven away from zero roll angle. Thus, the model cannot maintain its equilibrium at zero roll angle during free-to-roll motion. The unstable rolling moment is generated by the wing vortex structure above the upward wing, which is induced by the forebody asymmetric vortices. During wing rock, the wing vortex structure appears above the upward wing at a large roll angle after crossing zero roll angle owing to a time lag in the forebody vortex position, which is conducive to the motion. The forebody asymmetric vortices are thus the key to induce and maintain the motion.