Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We study zero modes of two-dimensional Pauli operators with Aharonov–Bohm fluxes in the case when the solenoids are arranged in periodic structures like chains or lattices. We also consider perturbations to such periodic systems which may be infinite and irregular but they are always supposed to be sufficiently scarce.
We study localization of various matter fields on a non-Z2-symmetric scalar thick brane in a pure geometric Weyl integrable manifold in which variations in the length of vectors during parallel transport are allowed and a geometric scalar field is involved in its formulation. It is shown that, for spin 0 scalar field, the massless zero mode can be normalized on the brane. Spin 1 vector field cannot be normalized on the brane. And there is no spinor field which can be trapped on the brane for the case of no Yukawa-type coupling. By introducing the appropriate Yukawa coupling, the left or right chiral fermionic zero mode can be localized on the brane.
The chiral anomaly in (2+1)-dimensions and its relationship to the zero mode of the Dirac equation in the massless case is studied. Solutions are obtained for the Dirac equation under a vector potential which generates a constant magnetic field. It is shown that there is an anomaly term associated with the corresponding chiral transformation. It can be calculated by using the regularization procedure of Fujikawa. The results are applied to the quantum Hall effect.
In this paper, starting from a lattice model of topological insulators, we study the quantum phase transitions among different quantum states, including quantum spin Hall state, quantum anomalous Hall state and normal band insulator state by calculating their topological properties (edge states, quantized spin Hall conductivities, and the number of zero mode on a π-flux). We find that at the topological quantum phase transitions (TQPTs), the topological "order parameter" — spin Chern number will jump. And since the masses of the nodal fermions will change sign, the third derivative of ground-state energy is nonanalytic. In addition, we discuss the finite temperature properties and the stability of the TQPTs.