Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Hybrid thin films of crystalline zinc oxide and the zinc complex of 5,10,15,20-tetrakis-(4-sulfonatophenyl)porphyrin (ZnTPPS) have been prepared by cathodic electrodeposition from different aqueous zinc salt solutions. Films from a solution containing zinc nitrate and the porphyrin derivate show a rough surface and porosity, whereas films prepared from an oxygen-saturated zinc chloride solution were very smooth. The presence of the porphyrin derivative in the deposition solution has a clear influence on the morphology of the hybrid films compared with pure zinc oxide films. In aqueous zinc nitrate solution the addition of the porphyrin derivative hinders the growth of zinc oxide. In contrast, the addition of the dye to the oxygen-saturated zinc chloride solution leads to an increase of the growth rate of ZnO/porphyrin hybrid films. An increased spectral absorbance was reached when two dyes (zinc complex of tetrasulfonated phthalocyanine and porphyrin) were added to the zinc nitrate solution since the electrodeposited hybrid thin films contained both dyes. UV-vis spectra revealed the presence of both macrocyclic metal complexes in the ZnO films.
The reactivity of phthalonitrile, tetrafluorophthalonitrile and 4,5-dibutoxyphthalonitrile with unmodified surfaces of ZnO and SiO2 and with the modified systems SiO2/Cp2Co, ZnO/Cp2Co, SiO2/Zn(AcAc)2 prepared by deposition of cobaltocene (Cp2Co) and zinc acetylacetonate Zn(AcAc)2, was studied ("in-situ-synthesis") in processes of phthalocyanine coatings. The formation of structural uniform phthalocyanines on carriers were established by UV-vis and mass spectra. The compounds were used then to compare their catalytic and photocatalytic activities in the oxidation of sulfide as a test reaction.
The photoelectroectrochemical studies of water soluble octacarboxylated oxotitanium (OTiOCPc), zinc (ZnOCPC), hydroxyaluminium ((OH)AlOCPc), dihydroxysilicon ((OH)2SiOCPc), hydroxygallium (OHGaOCPc) and low symmetry zinc monocarboxy (ZnMCPc) phthalocyanines were performed. The dyes were adsorbed to nanoporous ZnO electrodeposited in the presence of eosin Y as structure directing agent (SDA) on FTO substrates by refluxing or soaking the films in a solution containing the dye of interest such that a full surface coverage was achieved. High external (IPCE) and internal (APCE) quantum efficiencies of up to 50.6% and 96.7% were achieved for the OTiOCPc complex. There was a lower overall cell efficiency for cells sensitized with phthalocyanines containing hydroxyl as axial ligand ZnO/(OH)2SiOCPc, ZnO/(OH)GaOCPc and (OH)AlOCPc because of strong aggregation on the surface of the electrodes. To further suppress dye aggregation, the zinc complex of a new monocarboxylated phthalocyanine sensitizer with bulky naphtho side groups (ZnMCPc) was employed. Among the studied sensitizers, ZnMCPc gave the highest overall cell efficiency of phthalocyanine electrodeposited on ZnO of η = 0.48%.
Zinc oxide (ZnO) and yttrium-doped ZnO nanoparticles with particle size in the nanometer range have been successfully synthesized by the alkali precipitation method. The nanoparticle size and morphology have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscope (TEM). The average particle size of Y-doped ZnO nanoparticles is about 17–29 nm. The absorption and photoluminescence (PL) spectra of the undoped and doped ZnO nanoparticles were also investigated. The optical band gap of ZnO nanoparticles can be tuned from 3.27 to 3.40 eV with increasing yittrium doping levels from 0 to 5%. The nanoparticles gave two emission peaks, one at around 376 nm and the other at 500 nm.
A new method for preparation of a carbon nanotube (CNT)–zinc oxide hybrid on a glass substrate at low temperature is introduced and the stability improvement of field emission of CNTs is reported. The emission current stability and substrate material are the two main commercial parameters for field emission applications of CNTs. The two alternative current (AC) and direct current (DC) plasma enhancement chemical vapor deposition (PECVD) is used to achieve low-temperature growth of vertically aligned CNTs and the hydrothermal processing is used for production of zinc oxide nanowires to improve the emission current stability and properties. The nanoscale junction between a semiconductor and conductive material are critical for electronic applications. The present study examined the field emission properties of CNTs near the crystalline structure of the zinc oxide hybrids and showed the improvement in the field enhancement factor and emission current stability of CNT–ZnO hybrid than the CNT emitters.
In this paper, we prepared the rattle type nanoparticles ZnO@void@SiO2 by two successive coating processes, followed by heat treatment. The carbon layer was formed over ZnO surface with the aid of the hydrothermal treatment of glucose. Then the resulting composite was used to fabricate a silica shell on the surface by sol–gel method. Finally, ZnO particles were released but still trapped inside the silica hollow after calcination, that is, ZnO@void@SiO2. The composites were characterized by scanning and transmission electron microscope, N2 adsorption experiment, X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis absorption spectra. The rattle type structure was conformed and the sphere-like structure with the average size of 70 nm and hexagonal wurtzite crystal structure were also observed. The measurement results of optical properties showed even though ZnO@C@SiO2 presented no photocatalysis, ZnO@void@SiO2 showed high activity even the ZnO core was encapsulated with the SiO2 hollow.
In this work, we report theoretical and experimental study of Pd/ZnO nanorod (NR) Schottky diodes-based ultraviolet photodetector (UV-PD). The ZnO-NRs are deposited on indium tin oxide (ITO) coated glass substrates by using a low-temperature hydrothermal method. The surface morphology of the ZnO-NRs film is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM image shows vertically grown NRs with uniformity, and XRD shows the preferred (002) orientation of ZnO-NR films. The current–voltage characteristics of Pd/ZnO-NR Schottky diodes are studied under dark and UV light. A voltage bias from −1V to +1V is applied and the ratio of photocurrent to dark current was (∼0.17×102 at V=0.5V) calculated from the I–V curve. The value of responsivity was found to be 0.111A/W at λ=365nm and at bias=0.50V. An approximated UV-PD structure has also been numerically simulated using three-dimensional (3D) device simulator from Visual TCAD of Cogenda International. The simulated I–V characteristics have also been plotted under both dark and light conditions. The simulated results are found to be following the nature of experimental results.
Photoelectrochemical (PEC) sensor is an important type of biosensor widely used in glutathione (GSH) sensing. The PEC properties of the photoanode present in the sensor are critical to its sensing performance. Zinc oxide (ZnO) is an excellent semiconductor with a suitable band gap and light absorption ability for photoanode applications. Meanwhile, the interfacial layer is also important in the separation and transportation process of the excitons. In this work, high-quality ZnO nanorods were grown on the indium tin oxide (ITO) substrates. An interfacial layer consisting of reduced graphene oxide (RGO) or MXene (a two-dimensional transition metal carbide)-derived TiO2 was introduced. Our results show that the introduction of the RGO/TiO2 hybrid interfacial layer can promote both the high-quality growth of ZnO nanorods and also provides suitable band gap grading for efficient excitons separation and transportation. The GSH sensing performance of the PEC sensor based on the ZnO nanorods grown on the RGO/TiO2 hybrid layer-coated ITO photoanode can dramatically improve the photocurrent strength and linearity.
Novel Cu-based binary composite phases were synthesized with an octadecylamine (ODA) synthetic system. HR-TEM was used to characterize the binary composite phase indicating that the Cu-based binary composite phase was a mixed phase of two oxides. ZnO gas sensing films decorated with Cu-based binary composite phase were parallel fabricated. The gas sensing performance to nitric oxides (NO, N2O, NO2) was studied. Cu–Mo–O binary composite phase-modified ZnO was screened out with high sensitivity and selectivity to NO. The gas sensing response to 0.5 ppm NO was 128.1. The detection limit of Cu–Mo–O binary composite phase-modified ZnO to NO was less than 10 ppb. Cu–Mo–O binary composite phase-modified ZnO also shows good selectivity to NO even using NO2 as interference gas. It is of great importance for the detection of NO.
Selaginella willdenowii, a commonly used greenhouse fern, was often used as a biowaste to synthesize zinc oxide nanoparticles (ZnO NPs) in an eco-friendly and cost-effective way. UV–Visible spectra studies were carried out to confirm the synthesis of S. willdenowii-mediated ZnO NPs (SW-ZnO NPs), and a peak at 367nm with a sharp band gap of 3.415eV was observed. The X-ray diffraction analysis indicated that the crystalline size of the synthesized SW-ZnO NPs was 11.971nm. The phytochemicals present in the extracts and the compounds involved in the reduction of metal to nanoparticles were determined by Fourier Transform Infrared analysis. Scanning electron microscopy was utilized to analyze the surface morphology and size of the obtained SW-ZnO NPs. The examination revealed that they exhibited a hexagonal shape, with an average size falling within the range of 17–23nm. Under ultra-violet light, reactive blue 220 and reactive yellow 145 dyes showed 78.06% and 60.14% degradation, showing potential photocatalytic degradation activity. The synthesized SW-ZnO NPs also exhibited antimicrobial activity against bacterial strains (Escherichia coli and Bacillus subtilis) and fungal cultures (Candida tropicalis and Candida albicans) showed cytotoxic activity against Hep-G2 cell lines. Our results suggest the green synthesized SW-ZnO NPs have potential photocatalytic, antimicrobial and cytotoxic potential.
It is well documented that various particulate matter — either incidental or engineered — are known to generate reactive oxygen species (ROS) in living cells. In circumstances where these reactive species are generated, antioxidant production is often increased. This balance in the biological reduction/oxidation (a.k.a. redox) state within the cell has not been thoroughly studied in exposures involving engineered nanoparticles. However, nanoparticle exposure has been postulated to induce a DNA damage cascade. In this study, we examined primary human dermal fibroblasts (HDF) exposed to three different, but commonly used engineered nanoparticles (i.e., cerium dioxide (CeO2), titanium dioxide (TiO2) and zinc oxide (ZnO)) in an attempt to determine the potential DNA damaging effects through the analysis of ROS generation, relevant protein upregulation response and single and double DNA strand breaks. Cell death was most elevated with exposure to ZnO, followed by TiO2 and CeO2. ROS generation was measured at 1 h, 6 h and 24 h after exposure to particles via a cell-based DCFH-DA (2′, 7′-dichlorfluorescein-diacetate) assay and indicated that ZnO generated the most significant amount of ROS. ZnO also caused upregulation of oxidative stress protein, heme oxygenase-1 and phosphorylation of p38; whereas CeO2 caused upregulation of superoxide dismutase. Results from the comet assay indicated that ZnO triggered significant DNA damage in cells at relatively low dosing concentrations (20 ppm). Immunocytochemistry with ZnO-treated cells revealed notable DNA double strand breaks evidenced by a marked increase in the presence of γ-H2AX foci. This finding was also indicated by western blot, as well as cell cycle arrest by the phosphorylation of cyclin-dependent kinase 1. These data suggest that the three particle-types induce different degrees of DNA damage. And, of the three particle-types tested, exposure to ZnO nanoparticles may cause the most significant DNA damage.
The deposition using cold gas dynamic spraying of Zinc oxide/Titanium (ZnO/Ti) composite have been fabricated on Al 6061 substrate, their biocompatibility and antibacterial properties were studied. Osteoblast cell was used for the biocompatibility test while Escherichia coli (DH5α) was employed in antibacterial study. The ratios of ZnO to Ti in their composite powders were 20:80, 50:50 and 80:20 (weight %). The ZnO/Ti coatings were successfully deposited using cold spraying parameters of 13-15 Bars under helium gas, temperature of between 300-400°C. The results obtained showed that the ZnO/Ti coatings exhibited significant antibacterial effects against E. coli. Moreover, biocompatibility results reported that cell viability decreased with increasing of ZnO concentration in coating composition.