World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Stochastic Models of Tumor Latency and Their Biostatistical Applications cover

This research monograph discusses newly developed mathematical models and methods that provide biologically meaningful inferences from data on cancer latency produced by follow-up and discrete surveillance studies. Methods for designing optimal strategies of cancer surveillance are systematically presented for the first time in this book. It offers new approaches to the stochastic description of tumor latency, employs biologically-based models for making statistical inference from data on tumor recurrence and also discusses methods of statistical analysis of data resulting from discrete surveillance strategies. It also offers insight into the role of prognostic factors based on the interpretation of their effects in terms of parameters endowed with biological meaning, as well as methods for designing optimal schedules of cancer screening and surveillance. Last but not least, it discusses survival models allowing for cure rates and the choice of optimal treatment based on covariate information, and presents numerous examples of real data analysis.


Contents:
  • Introduction
  • Mathematical Description of Tumor Latency
  • Regression Analysis of Tumor Recurrence Data
  • Threshold Models of Tumor Latency
  • Statistical Analysis of Discrete Cancer Surveillance
  • Optimal Strategies of Cancer Surveillance
  • Minimum Delay Time Approach
  • Optimal Strategies of Cancer Surveillance
  • Minimum Cost Approach

Readership: Students and researchers in biomathematics and biostatistics.