World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Wavelets and Renormalization cover

WAVELETS AND RENORMALIZATION describes the role played by wavelets in Euclidean field theory and classical statistical mechanics. The author begins with a stream-lined introduction to quantum field theory from a rather basic point of view. Functional integrals for imaginary-time-ordered expectations are introduced early and naturally, while the connection with the statistical mechanics of classical spin systems is introduced in a later chapter.

A vastly simplified (wavelet) version of the celebrated Glimm-Jaffe construction of the Φ43 quantum field theory is presented. It is due to Battle and Federbush, and it bases an inductively defined cluster expansion on a wavelet decomposition of the Euclidean quantum field. The presentation is reserved for the last chapter, while the more basic aspects of cluster expansions are reviewed in the chapter on classical spin systems.

Wavelets themselves are studied from two different points of view arising from two disciplines. The mathematical point of view covers the basic properties of wavelets and methods for constructing well-known wavelets such as Meyer wavelets, Daubechies wavelets, etc. The physical point of view covers the renormalization group formalism, where there is a close connection between wavelets and Gaussian fixed points.

The book is heavily mathematical, but avoids the theorem-proof-theorem-proof format in the interests of preserving the flow of the discussion — i.e., it is written in the style of an old-fashioned theoretical physics book, but the major claims are rigorously proven. The minor themes of the book are reflection positivity, the combinatorics of cluster expansions, and the issue of phase transitions — themes which have nothing to do with wavelets, but which provide necessary cultural background for the physical context.


Contents:
  • Mathematical Sketches of Quantum Physics
  • Wavelets — Basic Theory and Construction
  • Equilibrium States of Classical Crystals
  • A Wavelet Introduction to the Renormalization Group
  • Wavelet Analysis of Φ43

Readership: Applied mathematicians.