World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Twin Drain Quantum Well/Quantum Dot Channel Spatial Wave-Function Switched (SWS) FETs for Multi-Valued Logic and Compact DRAMs

    https://doi.org/10.1142/9789811208447_0011Cited by:0 (Source: Crossref)
    Abstract:

    This paper aims to design and simulate a compact dynamic random access memory (DRAM) cell using two-channel spatial wavefunction switched (SWS) field-effect transistor (FET) and two capacitors. One unit of a SWSFET based DRAM cell stores 2-bits, which reduces the overall cell area by 50% as compared to a conventional 1-bit DRAM cell. SWSFETs have two or more vertically stacked quantum well channels as the transport layer between source and drain. In a two quantum channel n-SWSFET, as the gate voltage is raised above threshold, electrons appear in the lower quantum well W2 and this inversion channel connects Source S2 to drain D2. As the gate voltage is further increased, electrons transfer to upper quantum well W1 and now source S1 and drain D1 are connected electrically. Spatial location of electrons allows us to encode as 4 logic states: no electrons 00, electrons in W2 01, electrons is both wells 10 and electrons in well W1. This property of the SWSFET has been shown to implement multi-valued logic circuits. A SWSFET may have 2-4 sources and drains independently operated or connected together depending upon the logic circuit implementation.