World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Design and Fabrication of Terahertz Detectors Based on 180-nm CMOS Process Technology

    https://doi.org/10.1142/9789813223288_0004Cited by:0 (Source: Crossref)
    Abstract:

    A CMOS cascode amplifier, biased near the threshold voltage of a MOSFET, for terahertz direct detection is proposed. A CMOS terahertz imaging circuit (size: 250 × 180 μm) is designed and fabricated on the basis of low-cost 180-nm CMOS process technology. The imaging circuit consists of a microstrip patch antenna, an impedance-matching circuit, and a direct detector. It achieves a responsivity of 51.9 kV/W at 0.915 THz and a noise equivalent power (NEP) of 358 pW/Hz½ at a modulation frequency of 31 Hz. NEP is estimated to be reduced to 42 pW/Hz½ at 100 kHz. These results suggest that cost-efficient terahertz imaging is possible in the near future.