World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Human Gait Recognition Based on Frame-by-Frame Gait Energy Images and Convolutional Long Short-Term Memory

    https://doi.org/10.1142/S0129065719500278Cited by:77 (Source: Crossref)

    Human gait recognition is one of the most promising biometric technologies, especially for unobtrusive video surveillance and human identification from a distance. Aiming at improving recognition rate, in this paper we study gait recognition using deep learning and propose a novel method based on convolutional Long Short-Term Memory (Conv-LSTM). First, we present a variation of Gait Energy Images, i.e. frame-by-frame GEI (ff-GEI), to expand the volume of available Gait Energy Images (GEI) data and relax the constraints of gait cycle segmentation required by existing gait recognition methods. Second, we demonstrate the effectiveness of ff-GEI by analyzing the cross-covariance of one person’s gait data. Then, making use of the temporality of our human gait, we design a novel gait recognition model using Conv-LSTM. Finally, the proposed method is evaluated extensively based on the CASIA Dataset B for cross-view gait recognition, furthermore the OU-ISIR Large Population Dataset is employed to verify its generalization ability. Our experimental results show that the proposed method outperforms other algorithms based on these two datasets. The results indicate that the proposed ff-GEI model using Conv-LSTM, coupled with the new gait representation, can effectively solve the problems related to cross-view gait recognition.