World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Epileptic Seizure Prediction Using Deep Neural Networks Via Transfer Learning and Multi-Feature Fusion

    https://doi.org/10.1142/S0129065722500320Cited by:35 (Source: Crossref)

    Epilepsy is one of the most common neurological diseases, which can seriously affect the patient’s psychological well-being and quality of life. An accurate and reliable seizure prediction system can generate alarm before epileptic seizures to provide patients and their caregivers with sufficient time to take appropriate action. This study proposes an efficient seizure prediction system based on deep learning in order to anticipate the onset of the seizure as early as possible. Handcrafted features extracted based on the prior knowledge and hidden deep features are complementarily fused through the feature fusion module, and then the hybrid features are fed into the multiplicative long short-term memory (MLSTM) to explore the temporal dependency in EEG signals. A one-dimensional channel attention mechanism is implemented to emphasize the more representative information in the multi-channel output of the MLSTM. Finally, a transfer learning strategy is proposed to transfer the weights of the base model trained on the EEG data of all patients to the target patient model, and the latter is then continuously trained using the EEG data of the target patient. The proposed method achieves an average sensitivity of 95.56% and a false positive rate (FPR) of 0.27/h on the SWEC-ETHZ intracranial EEG data. For the more challenging CHB-MIT scalp EEG database, an average sensitivity of 89.47% and a FPR of 0.34/h are obtained. Experimental results demonstrate that the proposed method has good robustness and generalization ability in both intracranial and scalp EEG signals.

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!