Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PHASE TRANSITION-BASED OPTIMIZED ADAPTING MODEL FOR REAL-TIME SEIZURE PREDICTION APPLICATION

    Epilepsy is a dynamic process that will undoubtedly continue throughout an individual’s lifetime. One part of the brain may get affected, other brain regions also can possibly get involved in this disorder. Such seizures are sometimes life threatening; therefore, a warning signal is required to provide information to their respective caretakers in order to ensure the safety of the epileptic patients. The following are the four states of seizure: interictal (between seizures), preictal (before seizure), ictal (seizure), and postictal (after seizures). The ability to accurately distinguish the unique preictal state from the other seizure states is essential for seizure prediction. The Seizures can only be predicted by early detection of the preictal condition, which helps to differentiate seizure prediction from seizure detection. Preictal signals, which typically appear minutes to hours before a seizure occurs, are predicted in order to prevent seizures. In this paper, the discussions on the seizure predictions and its procedures are done. An optimized adapting model based on the phase transitions for real-time seizure prediction is developed and implemented in this study. We proposed a classification model called as enhanced convolutional neural networks (ECNNs) that has been tuned for speeding convergence and reducing model complexity utilizing the Fletcher Reeves Algorithm (WO-FRA) based on Walrus Optimization. Furthermore, the Phase Transition Predictor (PTP) based on the Kullback–Leibler (KL) divergence yields a Premium Seizure Prediction Horizon (PSPH). The suggested model’s empirical results, which were verified using 1000 EEG recordings from the CHB-MIT, NINC, and SRM databases, outperform the current techniques with 98% accuracy, 0.07 h1 false prediction rate and with 99% sensitivity.

  • articleNo Access

    ABNORMAL INTERICTAL GAMMA ACTIVITY MAY MANIFEST A SEIZURE ONSET ZONE IN TEMPORAL LOBE EPILEPSY

    Even though recent studies have suggested that seizures do not occur suddenly and that before a seizure there is a period with an increased probability of seizure occurrence, neurophysiological mechanisms of interictal and pre-seizure states are unknown. The ability of mathematical methods to provide much more sensitive tools for the detection of subtle changes in the electrical activity of the brain gives promise that electrophysiological markers of enhanced seizure susceptibility can be found even during interictal periods when EEG of epilepsy patients often looks 'normal'. Previously, we demonstrated in animals that hippocampal and neocortical gamma-band rhythms (30–100 Hz) intensify long before seizures caused by systemic infusion of kainic acid. Other studies in recent years have also drawn attention to the fast activity (>30 Hz) as a possible marker of epileptogenic tissue. The current study quantified gamma-band activity during interictal periods and seizures in intracranial EEG (iEEG) in 5 patients implanted with subdural grids/intracranial electrodes during their pre-surgical evaluation. In all our patients, we found distinctive (abnormal) bursts of gamma activity with a 3 to 100 fold increase in power at gamma frequencies with respect to selected by clinicians, quiescent, artifact-free, 7–20 min "normal" background (interictal) iEEG epochs 1 to 14 hours prior to seizures. Increases in gamma activity were largest in those channels which later displayed the most intensive electrographic seizure discharges. Moreover, location of gamma-band bursts correlated (with high specificity, 96.4% and sensitivity, 83.8%) with seizure onset zone (SOZ) determined by clinicians. Spatial localization of interictal gamma rhythms within SOZ suggests that the persistent presence of abnormally intensified gamma rhythms in the EEG may be an important tool for focus localization and possibly a determinant of epileptogenesis.

  • articleNo Access

    Online Epileptic Seizure Prediction Using Wavelet-Based Bi-Phase Correlation of Electrical Signals Tomography

    Considerable efforts have been made in order to predict seizures. Among these methods, the ones that quantify synchronization between brain areas, are the most important methods. However, to date, a practically acceptable result has not been reported. In this paper, we use a synchronization measurement method that is derived according to the ability of bi-spectrum in determining the nonlinear properties of a system. In this method, first, temporal variation of the bi-spectrum of different channels of electro cardiography (ECoG) signals are obtained via an extended wavelet-based time-frequency analysis method; then, to compare different channels, the bi-phase correlation measure is introduced. Since, in this way, the temporal variation of the amount of nonlinear coupling between brain regions, which have not been considered yet, are taken into account, results are more reliable than the conventional phase-synchronization measures. It is shown that, for 21 patients of FSPEEG database, bi-phase correlation can discriminate the pre-ictal and ictal states, with very low false positive rates (FPRs) (average: 0.078/h) and high sensitivity (100%). However, the proposed seizure predictor still cannot significantly overcome the random predictor for all patients.

  • articleNo Access

    A Realistic Seizure Prediction Study Based on Multiclass SVM

    A patient-specific algorithm, for epileptic seizure prediction, based on multiclass support-vector machines (SVM) and using multi-channel high-dimensional feature sets, is presented. The feature sets, combined with multiclass classification and post-processing schemes aim at the generation of alarms and reduced influence of false positives. This study considers 216 patients from the European Epilepsy Database, and includes 185 patients with scalp EEG recordings and 31 with intracranial data. The strategy was tested over a total of 16,729.80h of inter-ictal data, including 1206 seizures. We found an overall sensitivity of 38.47% and a false positive rate per hour of 0.20. The performance of the method achieved statistical significance in 24 patients (11% of the patients). Despite the encouraging results previously reported in specific datasets, the prospective demonstration on long-term EEG recording has been limited. Our study presents a prospective analysis of a large heterogeneous, multicentric dataset. The statistical framework based on conservative assumptions, reflects a realistic approach compared to constrained datasets, and/or in-sample evaluations. The improvement of these results, with the definition of an appropriate set of features able to improve the distinction between the pre-ictal and nonpre-ictal states, hence minimizing the effect of confounding variables, remains a key aspect.

  • articleNo Access

    Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG

    Epilepsy is a chronic neurological disorder characterized by sudden and apparently unpredictable seizures. A system capable of forecasting the occurrence of seizures is crucial and could open new therapeutic possibilities for human health. This paper addresses an algorithm for seizure prediction using a novel feature — diffusion distance (DD) in intracranial Electroencephalograph (iEEG) recordings. Wavelet decomposition is conducted on segmented electroencephalograph (EEG) epochs and subband signals at scales 3, 4 and 5 are utilized to extract the diffusion distance. The features of all channels composing a feature vector are then fed into a Bayesian Linear Discriminant Analysis (BLDA) classifier. Finally, postprocessing procedure is applied to reduce false prediction alarms. The prediction method is evaluated on the public intracranial EEG dataset, which consists of 577.67h of intracranial EEG recordings from 21 patients with 87 seizures. We achieved a sensitivity of 85.11% for a seizure occurrence period of 30min and a sensitivity of 93.62% for a seizure occurrence period of 50min, both with the seizure prediction horizon of 10s. Our false prediction rate was 0.08/h. The proposed method yields a high sensitivity as well as a low false prediction rate, which demonstrates its potential for real-time prediction of seizures.

  • articleNo Access

    Roughness-Length-Based Characteristic Analysis of Intracranial EEG and Epileptic Seizure Prediction

    To identify precursors of epileptic seizures, an EEG characteristic analysis is carried out based on a roughness-length method, where fractal dimensions and intercept values are extracted to measure the structure complexity and the amplitude roughness of EEG signals in different phases. Using the significant changes of the fractal dimension and intercept in the preictal phase with respect to those in the interictal phase, a patient-specific seizure prediction algorithm is then proposed by combining with a gradient boosting classifier. The probabilistic outputs of the trained gradient boosting classifier are further processed by threshold comparison and rule-based judgment to distinguish preictal EEG from interictal EEG and to generate seizure alerts. The prediction algorithm was evaluated on 20 patients’ intracranial EEG recordings from the Freiburg EEG database, which contains the preictal periods of 65 seizures and 499h interictal EEG. Setting the seizure prediction horizon as 2min, averaged sensitivity values of 90.42% and 91.67% with averaged false prediction rates of 0.12/h and 0.10/h were achieved for seizure occurrence periods of 30 and 50min, respectively. These results demonstrate the ability of fractal dimension and intercept metrics in predicting the occurrence of seizures.

  • articleNo Access

    A Deep Fourier Neural Network for Seizure Prediction Using Convolutional Neural Network and Ratios of Spectral Power

    Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for drug-resistant epilepsy. Conventional methods usually adopt handcrafted features and manual parameter setting. The over-reliance on the expertise of specialists may lead to weak exploitation of features and low popularization of clinical application. This paper proposes a novel parameterless patient-specific method based on Fourier Neural Network (FNN), where the Fourier transform and backpropagation learning are synthesized to make the predictor more efficient and practical. The employment of FNN is the first attempt in the field of seizure prediction due to its automatic extraction of immanent spectra in epileptic signals. Despite the self-adaptive superiority of FNN, we introduce Convolutional Neural Network (CNN) to further improve its search capability in high-dimensional feature spaces. The study also develops a multi-layer module to estimate spectral power ratios of raw recordings, which optimizes the prediction by enhancing feature diversity. Based on these modules, this paper proposes a two-channel deep neural network: Fourier Ratio Convolutional Neural Network (FRCNN). To demonstrate the reliability of the model, we explain the mathematical meaning of hidden-layer neurons in FRCNN theoretically. This approach is evaluated on both intracranial and scalp EEG datasets. It shows that the predictor achieved a sensitivity of 91.2% and a false prediction rate (FPR) of 0.06h1 across intracranial subjects and a sensitivity of 85.4% and an FPR of 0.14h1 over scalp subjects. The results indicate that FRCNN enables the convenience of epilepsy treatments while preserving a high degree of precision. In the end, a detailed comparison with the previous methods demonstrates that FRCNN has achieved higher performance and generalization ability.

  • articleNo Access

    Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning

    Epilepsy is one of the most common brain disorders worldwide. The most frequently used clinical tool to detect epileptic events and monitor epilepsy patients is the EEG recordings. There have been proposed many computer-aided diagnosis systems using EEG signals for the detection and prediction of seizures. In this study, a novel method based on Fourier-based Synchrosqueezing Transform (SST), which is a high-resolution time-frequency (TF) representation, and Convolutional Neural Network (CNN) is proposed to detect and predict seizure segments. SST is based on the reassignment of signal components in the TF plane which provides highly localized TF energy distributions. Epileptic seizures cause sudden energy discharges which are well represented in the TF plane by using the SST method. The proposed SST-based CNN method is evaluated using the IKCU dataset we collected, and the publicly available CHB-MIT dataset. Experimental results demonstrate that the proposed approach yields high average segment-based seizure detection precision and accuracy rates for both datasets (IKCU: 98.99% PRE and 99.06% ACC; CHB-MIT: 99.81% PRE and 99.63% ACC). Additionally, SST-based CNN approach provides significantly higher segment-based seizure prediction performance with 98.54% PRE and 97.92% ACC than similar approaches presented in the literature using the CHB-MIT dataset.

  • articleNo Access

    One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG

    Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30min and seizure prediction horizon (SPH) of 5min, 98.60% accuracy, 98.85% sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60min and SPH of 5min, 98.32% accuracy, 98.48% sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.

  • articleNo Access

    Epileptic Seizure Prediction Using Deep Transformer Model

    The electroencephalogram (EEG) is the most promising and efficient technique to study epilepsy and record all the electrical activity going in our brain. Automated screening of epilepsy through data-driven algorithms reduces the manual workload of doctors to diagnose epilepsy. New algorithms are biased either towards signal processing or deep learning, which holds subjective advantages and disadvantages. The proposed pipeline is an end-to-end automated seizure prediction framework with a Fourier transform feature extraction and deep learning-based transformer model, a blend of signal processing and deep learning — this imbibes the potential features to automatically identify the attentive regions in EEG signals for effective screening. The proposed pipeline has demonstrated superior performance on the benchmark dataset with average sensitivity and false-positive rate per hour (FPR/h) as 98.46%, 94.83% and 0.12439, 0, respectively. The proposed work shows great results on the benchmark datasets and a big potential for clinics as a support system with medical experts monitoring the patients.

  • articleNo Access

    Epileptic Seizure Prediction Using Deep Neural Networks Via Transfer Learning and Multi-Feature Fusion

    Epilepsy is one of the most common neurological diseases, which can seriously affect the patient’s psychological well-being and quality of life. An accurate and reliable seizure prediction system can generate alarm before epileptic seizures to provide patients and their caregivers with sufficient time to take appropriate action. This study proposes an efficient seizure prediction system based on deep learning in order to anticipate the onset of the seizure as early as possible. Handcrafted features extracted based on the prior knowledge and hidden deep features are complementarily fused through the feature fusion module, and then the hybrid features are fed into the multiplicative long short-term memory (MLSTM) to explore the temporal dependency in EEG signals. A one-dimensional channel attention mechanism is implemented to emphasize the more representative information in the multi-channel output of the MLSTM. Finally, a transfer learning strategy is proposed to transfer the weights of the base model trained on the EEG data of all patients to the target patient model, and the latter is then continuously trained using the EEG data of the target patient. The proposed method achieves an average sensitivity of 95.56% and a false positive rate (FPR) of 0.27/h on the SWEC-ETHZ intracranial EEG data. For the more challenging CHB-MIT scalp EEG database, an average sensitivity of 89.47% and a FPR of 0.34/h are obtained. Experimental results demonstrate that the proposed method has good robustness and generalization ability in both intracranial and scalp EEG signals.

  • articleNo Access

    Compact Convolutional Neural Network with Multi-Headed Attention Mechanism for Seizure Prediction

    Epilepsy is a neurological disorder related to frequent seizures. Automatic seizure prediction is crucial for the prevention and treatment of epilepsy. In this paper, we propose a novel model for seizure prediction that incorporates a convolutional neural network (CNN) with multi-head attention mechanism. In this model, the shallow CNN automatically captures the EEG features, and the multi-headed attention focuses on discriminating the effective information among these features for identifying pre-ictal EEG segments. Compared with current CNN models for seizure prediction, the embedded multi-headed attention empowers the shallow CNN to be more flexible, and enables improvement of the training efficiency. Hence, this compact model is more resistant to being trapped in overfitting. The proposed method was evaluated over the scalp EEG data from the two publicly available epileptic EEG databases, and achieved outperforming values of event-level sensitivity, false prediction rate (FPR), and epoch-level F1. Furthermore, our method achieved the stable length of seizure prediction time that was between 14 and 15 min. The experimental comparisons showed that our method outperformed other prediction methods in terms of prediction and generalization performance.

  • articleNo Access

    Epileptic Seizure Prediction Using Attention Augmented Convolutional Network

    Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN’s limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.

  • articleNo Access

    Hybrid Network for Patient-Specific Seizure Prediction from EEG Data

    Seizure prediction can improve the quality of life for patients with drug-resistant epilepsy. With the rapid development of deep learning, lots of seizure prediction methods have been proposed. However, seizure prediction based on single convolution models is limited by the inherent defects of convolution itself. Convolution pays attention to the local features while underestimates the global features. The long-term dependence of the electroencephalogram (EEG) data cannot be captured. In view of these defects, a hybrid model called STCNN based on Swin transformer (ST) and 2D convolutional neural network (2DCNN) is proposed. Time-frequency features extracted by short-term Fourier transform (STFT) are taken as the input of STCNN. ST blocks are used in STCNN to capture the global information and long-term dependencies of EEGs. Meanwhile, the 2DCNN blocks are adopted to capture the local information and short-term dependent features. The combination of the two blocks can fully exploit the seizure-related information thus improve the prediction performance. Comprehensive experiments are performed on the CHB-MIT scalp EEG dataset. The average seizure prediction sensitivity, the area under the ROC curve (AUC) and the false positive rate (FPR) are 92.94%, 95.56% and 0.073, respectively.

  • articleNo Access

    Epileptic Seizure Prediction Using Spatiotemporal Feature Fusion on EEG

    Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering.

  • articleNo Access

    MEASURING SYNCHRONIZATION IN THE EPILEPTIC BRAIN: A COMPARISON OF DIFFERENT APPROACHES

    We investigate the relative merit of different linear and nonlinear synchronization measures for a characterization of the spatio-temporal dynamics of the epileptic process. Analyzing long-lasting multichannel electroencephalographic recordings from more than 20 epilepsy patients we show that all measures are able to identify brain regions of pathological synchronization associated with epilepsy, even during the seizure-free interval, and are able to detect a long-lasting transitional preseizure state. These findings render synchronization measures attractive for future prospective studies on seizure prediction.

  • articleNo Access

    PARAMETER SELECTION FOR PERMUTATION ENTROPY MEASUREMENTS

    We investigate the applicability of the permutation entropy H and a synchronization index γ that is based on the changing tendency of temporal permutation entropies to analyze noisy time series from nonstationary dynamical systems with poorly understood properties. Using model systems, we first study the interdependencies of parameters involved in the calculation of both measures. Having identified appropriate parameter settings we then analyze long-lasting EEG time series recorded from an epilepsy patient. Our findings indicate that γ could be of interest for studies on the predictability of epileptic seizures.

  • articleNo Access

    Epileptic Seizure Prediction Using a New Similarity Index for Chaotic Signals

    Epileptic seizures are generated by abnormal activity of neurons. The prediction of epileptic seizures is an important issue in the field of neurology, since it may improve the quality of life of patients suffering from drug resistant epilepsy. In this study a new similarity index based on symbolic dynamic techniques which can be used for extracting behavior of chaotic time series is presented. Using Freiburg EEG dataset, it is found that the method is able to detect the behavioral changes of the neural activity prior to epileptic seizures, so it can be used for prediction of epileptic seizure. A sensitivity of 63.75% with 0.33 false positive rate (FPR) in all 21 patients and sensitivity of 96.66% with 0.33 FPR in eight patients were achieved using the proposed method. Moreover, the method was evaluated by applying on Logistic and Tent map with different parameters to demonstrate its robustness and ability in determining similarity between two time series with the same chaotic characterization.

  • articleNo Access

    EPILEPTIC SEIZURE PREDICTION USING WAVELET TRANSFORM, FRACTAL DIMENSION, SUPPORT VECTOR MACHINE, AND EEG SIGNALS

    Fractals28 Jul 2022

    Epilepsy, a neurological disorder, affects millions of persons worldwide. It is distinguished by causing recurrent seizures in patients, which can conduct to severe health problems. Consequently, it is essential to offer a method capable of timely predicting a seizure before its appearance, so patients can avoid possible injuries by taking preventive action. In this sense, a method based on the integration of discrete wavelet transform (DWT), fractal dimension, and support vector machine (SVM) is presented for the prediction of an epileptic seizure up to 30min before its onset through the analysis of electroencephalogram (EEG) signals. DWT is initially applied to the EEG signals to obtain their main neurological bands; then, five fractal dimension indices (e.g. Sevcik, Petrosian, Box, Higuchi, and Katz) are explored as potential seizure indicators. Finally, an SVM is developed to predict the epileptic seizure automatically. The effectiveness of the proposal to predict an epileptic crisis is validated by employing a database of 14 subjects with 42 epileptic seizures provided by the Massachusetts Institute of Technology and the Children’s Hospital Boston. The results demonstrate that the proposal can predict an epileptic seizure up to 30min before its onset with a high accuracy of 93.33%.

  • articleNo Access

    EpiNET: AN OPTIMIZED, RESOURCE EFFICIENT DEEP GRU-LSTM NETWORK FOR EPILEPTIC SEIZURE PREDICTION

    The utilization of Electroencephalogram (EEG) as a non-invasive tool to investigate neurological disorders, particularly epilepsy, by capturing pathological biosignal markers indicative of seizures, sets the backdrop for this research endeavor. While previous studies have harnessed deep learning techniques for seizure detection, a pressing need persists for a resource-efficient model that demands minimal training data and time yet upholds commendable specificity and sensitivity. In response to this gap, we introduce an innovative deep Gated Recurrent Unit (GRU)– Long Short-Term Memory (LSTM) network, coined as EpiNET, purposefully crafted for the prediction of epileptic seizures using EEG data. A distinctive feature of EpiNET is its integration of statistical, spectral, and temporal features, chosen for their computational simplicity, thereby enhancing the model’s efficiency. The model is meticulously trained and validated on diverse patient datasets sourced from the CHB-MIT Scalp EEG database, outshining existing deep learning networks regarding seizure prediction accuracy. EpiNET boasts remarkable metrics, with reported sensitivity, accuracy, and specificity values standing at 92.54 ± 0.41%, 96.15 ± 0.45%, and 97.73 ± 0.58%, respectively. This underscores the efficacy of EpiNET while upholding a lean model structure, addressing concerns regarding computational efficiency. A ground-breaking aspect of this study is the introduction of a GRU-LSTM-based deep learning model capable of predicting epileptic seizures at least 2 h (120 min) in advance, marking a significant stride towards timely intervention and heightened patient care. In summary, this research not only advances the field of neurological disorder prediction but also underscores the paramount importance of resource efficiency in model development.