World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TOTAL-DOSE AND SINGLE-EVENT EFFECTS IN SILICON-GERMANIUM HETEROJUNCTION BIPOLAR TRANSISTORS

    https://doi.org/10.1142/S0129156404002478Cited by:0 (Source: Crossref)

    We present an overview of radiation effects in silicon-germanium heterojunction bipolar transistors (SiGe HBT). We begin by reviewing SiGe HBTs, and then examine the impact of ionizing radiation on both the dc and ac performance of SiGe HBTs, the circuit-level impact of radiation-induced changes in the transistors, followed by single-event phenomena in SiGe HBT circuits. While ionizing radiation degrades both the dc and ac properties of SiGe HBTs, this degradation is remarkably minor, and is far better than that observed in even radiation-hardened conventional Si BJT technologies. This fact is particularly significant given that no intentional radiation hardening is needed to ensure this level of both device-level and circuit-level tolerance (typically multi-Mrad TID). SEU effects are pronounced in SiGe HBT circuits, as expected, but circuit-level mitigation schemes will likely be suitable to ensure adequate tolerance for many orbital missions. SiGe HBT technology thus offers many interesting possibilities for space-borne electronic systems.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas