World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHARGE PUDDLES AND EDGE EFFECT IN A GRAPHENE DEVICE AS STUDIED BY A SCANNING GATE MICROSCOPE

    https://doi.org/10.1142/S0129156411006532Cited by:1 (Source: Crossref)

    Despite the recent progress in understanding the geometric structures of defects and edges in a graphene device (GD), how such defects and edges affect the transport properties of the device have not been clearly defined. In this study, the surface geometric structure of a GD was observed with an atomic force microscope (AFM) and the spatial variation of the transport current by the gating tip was measured with scanning gate microscopy (SGM). It was found that geometric corrugations, defects and edges directly influence the transport current. This observation is linked directly with a proposed scattering model based on macroscopic transport measurements.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas