World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: PAPERS FROM WORKSHOP ON FRONTIERS IN ELECTRONICS 2011; EDITED BY SORIN CRISTOLOVEANU AND MICHAEL SHURNo Access

PROGRESS IN SIC MATERIALS/DEVICES AND THEIR COMPETITION

    https://doi.org/10.1142/S0129156412500097Cited by:11 (Source: Crossref)

    Power semiconductor devices are important for numerous applications with power conversion being an important one. Wide energy gap semiconductors SiC and GaN have properties that make them attractive for such applications. Among these properties are high thermal conductivity, high breakdown electric field, wide energy gap, low intrinsic carrier concentration, high thermal stability, high saturation velocity and chemical inertness. These lead to low on-resistance, high breakdown voltage, high frequencies, small volume, and small passive inductors and capacitors. These desirable properties are offset by the higher material costs and higher defect densities. Although wide energy gap devices have been in development for many years, only recently have they become available commercially. Their main competition is silicon power devices with breakdown voltages up to 8000 V and very high surge current capacity. However, silicon power devices are approaching their material limits and wide energy gap devices are beginning to have an impact in the power electronics space. SiC has the advantage of substrates with diameters approaching 150 mm and the ability to grow thermal SiO2. GaN has the heterojunction advantage, but no viable substrate technology. In fact, a large portion of SiC production is used for GaN substrates. GaN material development has also benefited significantly from the development of optical devices, e.g., light-emitting diodes and lasers.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Antennas