World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Comodules over weak multiplier bialgebras

    https://doi.org/10.1142/S0129167X14500372Cited by:11 (Source: Crossref)

    This is a sequel paper of [Weak multiplier bialgebras, Trans. Amer. Math. Soc., in press] in which we study the comodules over a regular weak multiplier bialgebra over a field, with a full comultiplication. Replacing the usual notion of coassociative coaction over a (weak) bialgebra, a comodule is defined via a pair of compatible linear maps. Both the total algebra and the base (co)algebra of a regular weak multiplier bialgebra with a full comultiplication are shown to carry comodule structures. Kahng and Van Daele's integrals [The Larson–Sweedler theorem for weak multiplier Hopf algebras, in preparation] are interpreted as comodule maps from the total to the base algebra. Generalizing the counitality of a comodule to the multiplier setting, we consider the particular class of so-called full comodules. They are shown to carry bi(co)module structures over the base (co)algebra and constitute a monoidal category via the (co)module tensor product over the base (co)algebra. If a regular weak multiplier bialgebra with a full comultiplication possesses an antipode, then finite-dimensional full comodules are shown to possess duals in the monoidal category of full comodules. Hopf modules are introduced over regular weak multiplier bialgebras with a full comultiplication. Whenever there is an antipode, the Fundamental Theorem of Hopf Modules is proven. It asserts that the category of Hopf modules is equivalent to the category of firm modules over the base algebra.

    AMSC: 16T05, 16T10, 16D90, 18B40