MULTIPLIER BI- AND HOPF ALGEBRAS
Abstract
We propose a categorical interpretation of multiplier Hopf algebras, in analogy to usual Hopf algebras and bialgebras. Since the introduction of multiplier Hopf algebras by Van Daele [Multiplier Hopf algebras, Trans. Amer. Math. Soc.342(2) (1994) 917–932] such a categorical interpretation has been missing. We show that a multiplier Hopf algebra can be understood as a coalgebra with antipode in a certain monoidal category of algebras. We show that a (possibly nonunital, idempotent, nondegenerate, k-projective) algebra over a commutative ring k is a multiplier bialgebra if and only if the category of its algebra extensions and both the categories of its left and right modules are monoidal and fit, together with the category of k-modules, into a diagram of strict monoidal forgetful functors.