World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Computational study of the cavity flow over sharp nose cone in supersonic flow

    https://doi.org/10.1142/S0129183120500795Cited by:87 (Source: Crossref)

    Heat and drag reduction on the nose cone is a significant issue for increasing the speed of the supersonic vehicles. In this paper, computational fluid dynamic method is applied to investigate the thermal and drag coefficient on the sharp nose cone with different cavity shapes. In order to simulate our model, the CFD method with SST turbulence model is applied to study the flow feature and temperature distribution in the vicinity of the nose body. The effect of depth and length of the cavity on the thermal characteristic of the nose cone is comprehensively investigated. In addition, the influence of the number of the cavity in the thermal performance of the main body is studied. According to our results, increasing the length of the cavity highly efficient for the reduction of the drag at Mach = 3. As the Mach number is increased to 3, the number of the cavity becomes a significant role and it is observed that case 9 with four cavities is more efficient. Obtained results also show that increasing the cavity depth declines the temperature on the main body. Our findings confirm that the main source of the expansion is the edge of the cavity.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!