Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Computational study of the cavity flow over sharp nose cone in supersonic flow

    Heat and drag reduction on the nose cone is a significant issue for increasing the speed of the supersonic vehicles. In this paper, computational fluid dynamic method is applied to investigate the thermal and drag coefficient on the sharp nose cone with different cavity shapes. In order to simulate our model, the CFD method with SST turbulence model is applied to study the flow feature and temperature distribution in the vicinity of the nose body. The effect of depth and length of the cavity on the thermal characteristic of the nose cone is comprehensively investigated. In addition, the influence of the number of the cavity in the thermal performance of the main body is studied. According to our results, increasing the length of the cavity highly efficient for the reduction of the drag at Mach = 3. As the Mach number is increased to 3, the number of the cavity becomes a significant role and it is observed that case 9 with four cavities is more efficient. Obtained results also show that increasing the cavity depth declines the temperature on the main body. Our findings confirm that the main source of the expansion is the edge of the cavity.

  • articleNo Access

    Coupling strategies for compressible-low Mach number flows

    In order to enrich the modeling of fluid flows, we investigate in this paper a coupling between two models dedicated to distinct regimes. More precisely, we focus on the influence of the Mach number as the low Mach case is known to induce theoretical and numerical issues in a compressible framework. A moving interface is introduced to separate a compressible model (Euler with source term) and its low Mach counterpart through relevant transmission conditions. A global steady state for the coupled problem is exhibited. Numerical simulations are then performed to highlight the influence of the coupling by means of a robust numerical strategy.

  • articleNo Access

    EXACT RIEMANN SOLUTIONS TO COMPRESSIBLE EULER EQUATIONS IN DUCTS WITH DISCONTINUOUS CROSS-SECTION

    We determine completely the exact Riemann solutions for the system of Euler equations in a duct with discontinuous varying cross-section. The crucial point in solving the Riemann problem for hyperbolic system is the construction of the wave curves. To address the difficulty in the construction due to the nonstrict hyperbolicity of the underlying system, we introduce the L-M and R-M curves in the velocity-pressure phase plane. The behaviors of the L-M and R-M curves for six basic cases are fully analyzed. Furthermore, we observe that in certain cases the L-M and R-M curves contain the bifurcation which leads to the nonuniqueness of the Riemann solutions. Nevertheless, all possible Riemann solutions including classical as well as resonant solutions are solved in a uniform framework for any given initial data.

  • articleNo Access

    Thermal Shock Resistance of Chemical Vapor Deposited Zinc Sulfide Under Active Cooling

    The thermal shock resistance of chemical vapor deposited zinc sulfide (CVD ZnS) infrared side window of high-speed vehicles with convective cooling is studied using finite volume method. The involved factors are the surface heat flux, coolant temperature, convective heat transfer coefficient, and thermal shock initial temperature. All the material properties are temperature-dependent. The study shows that convective cooling can improve the thermal up shock resistance of CVD ZnS caused by aerodynamic heating at the upper surface. On the other hand, it can also lead to thermal down shock failure at the lower surface. The critical failure time corresponding to thermal down shock failure is much less than that corresponding to thermal up shock failure. Thus, thermal down shock failure should be avoided in application. The critical thermal shock initial temperatures, below which convective cooling will not cause thermal down shock failure, for different coolants are calculated.