World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Role of Ophiopogonin D in Atherosclerosis: Impact on Lipid Metabolism and Gut Microbiota

    https://doi.org/10.1142/S0192415X21500683Cited by:11 (Source: Crossref)

    Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE/) mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE/ mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE/ mice were randomly divided into the model group, OPD group, and simvastatin group (n= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.

    References

    • Alves, M.T., M.M.O. Ortiz, G.V.O.P. Dos Reis, L.M.S. Dusse, M.D.G. Carvalho, A.P. Fernandes and K.B. Gomes . The dual effect of C-peptide on cellular activation and atherosclerosis: Protective or not?. Diabetes Metab. Res. Rev. 35: e3071, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ardiansyah , Y. Inagawa, T. Koseki, A.Z. Agista, I. Ikeda, T. Goto, M. Komai and H. Shirakawa . Adenosine and adenosine-5’-monophosphate ingestion ameliorates abnormal glucose metabolism in mice fed a high-fat diet. BMC Complement. Altern. Med. 18: 304, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Cao, W., Y. Chin, X. Chen, Y. Mi, C. Xue, Y. Wang and Q. Tang . The role of gut microbiota in the resistance to obesity in mice fed a high fat diet. Int. J. Food Sci. Nutr. 71: 453–463, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ceriello, A. and E. Motz . Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 24: 816–823, 2004. Crossref, Medline, Web of ScienceGoogle Scholar
    • Chen, S., X. Li, L. Liu, C. Liu and X. Han . Ophiopogonin D alleviates high-fat diet-induced metabolic syndrome and changes the structure of gut microbiota in mice. FASEB J. 32: 1139–1153, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Fleissner, C.K., N. Huebel, M.M.A. El-Bary, G. Loh, S. Klaus and M. Blaut . Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 104: 919–929, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Frampton, J., K.G. Murphy, G. Frost and E.S. Chambers . Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2: 840–848, 2020. Crossref, MedlineGoogle Scholar
    • Hao, T., H. Chen, S. Wu and H. Tian . LRG ameliorates steatohepatitis by activating the AMPK/mTOR/SREBP1 signaling pathway in C57BL/6J mice fed a highfat diet. Mol. Med. Rep. 20: 701–708, 2019. Medline, Web of ScienceGoogle Scholar
    • Hills, R.D., B.A. Pontefract, H.R. Mishcon, C.A. Black, S.C. Sutton and C.R. Theberge . Gut microbiome: Profound implications for diet and disease. Nutrients 11: 1613, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Huang, Q., B. Gao, L. Wang, H.Y. Zhang, X.J. Li, J. Shi, Z. Wang, J.K. Zhang, L. Yang, Z.J. Luo and J. Liu . Ophiopogonin D: A new herbal agent against osteoporosis. Bone 74: 18–28, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Huang, X., Y. Wang, Z. Zhang, Y. Wang, X. Chen, Y. Wang and Y. Gao . Ophiopogonin D and EETs ameliorate Ang II-induced inflammatory responses via activating PPARalpha in HUVECs. Biochem. Biophys. Res. Commun. 490: 123–133, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Javary, J., N. Allain-Courtois, N. Saucisse, P. Costet, C. Heraud, F. Benhamed, R. Pierre, C. Bure, N. Pallares-Lupon, Cruzeiro M. Do, C. Postic, D. Cota, P. Dubus, J. Rosenbaum and S. Benhamouche-Trouillet . Liver Reptin/RUVBL2 controls glucose and lipid metabolism with opposite actions on mTORC1 and mTORC2 signalling. Gut 67: 2192–2203, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Jing, Y., Q. Sun, X. Xiong, R. Meng, S. Tang, S. Cao, Y. Bi and D. Zhu . Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice. J. Diabetes Investig. 10: 251–260, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Jonsson, A.L. and F. Backhed . Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 14: 79–87, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Khamzina, L., A. Veilleux, S. Bergeron and A. Marette . Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: Possible involvement in obesity-linked insulin resistance. Endocrinology 146: 1473–1481, 2005. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kolodziejczyk, A.A., D. Zheng, O. Shibolet and E. Elinav . The role of the microbiome in NAFLD and NASH. EMBO Mol. Med. 11: e9302, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Korsheninnikova, E., G.C. van der Zon, P.J. Voshol, G.M. Janssen, L.M. Havekes, A. Grefhorst, F. Kuipers, D.J. Reijngoud, J.A. Romijn, D.M. Ouwens and J.A. Maassen . Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice. Diabetologia 49: 3049–3057, 2006. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kurdi, A., W. Martinet and G.R.Y. De Meyer . MTOR inhibition and cardiovascular diseases: Dyslipidemia and atherosclerosis. Transplantation 102: S44–S46, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lacy, M., D. Atzler, R. Liu, M. de Winther, C. Weber and E. Lutgens . Interactions between dyslipidemia and the immune system and their relevance as putative therapeutic targets in atherosclerosis. Pharmacol. Ther. 193: 50–62, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lee, J.H., C. Kim, S.G. Lee, G. Sethi and K.S. Ahn . Ophiopogonin D, a steroidal glycoside abrogates STAT3 signaling cascade and exhibits Anti-Cancer activity by causing GSH/GSSG imbalance in lung carcinoma. Cancers 10: 427, 2018. Crossref, Web of ScienceGoogle Scholar
    • Li, X. and X. Li . Obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction in the colon. Inflammation 43: 1884–1892, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Liang, H., A. Mokrani, H. Chisomo-Kasiya, K. Ji, X. Ge, M. Ren, B. Liu, B. Xi and A. Sun . Dietary leucine affects glucose metabolism and lipogenesis involved in TOR/PI3K/Akt signaling pathway for juvenile blunt snout bream Megalobrama amblycephala. Fish Physiol. Biochem. 45: 719–732, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Luan, H., Z. Huo, Z. Zhao, S. Zhang, Y. Huang, Y. Shen, P. Wang, J. Xi, J. Liang and F. Wu . Scutellarin, a modulator of mTOR, attenuates hepatic insulin resistance by regulating hepatocyte lipid metabolism via SREBP-1c suppression. Phytother. Res. 34: 1455–1466, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lv, Y., X. Gao, Y. Luo, W. Fan, T. Shen, C. Ding, M. Yao, S. Song and L. Yan . Apigenin ameliorates HFD-induced NAFLD through regulation of the XO/NLRP3 pathways. J. Nutr. Biochem. 71: 110–121, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Mailhe, M., D. Ricaboni, V. Vitton, J.C. Lagier, P.E. Fournier and D. Raoult . Ileibacterium massiliense” gen. Nov., Sp. Nov., A new bacterial species isolated from human ileum of a patient with Crohn disease. New Microbes New Infect. 17: 25–26, 2017. Crossref, MedlineGoogle Scholar
    • Mao, Z. and W. Zhang . Role of mTOR in glucose and lipid metabolism. Int. J. Mol. Sci. 19: 2043, 2018. Crossref, Web of ScienceGoogle Scholar
    • Martinet, W., H. De Loof and G.R.Y. De Meyer . MTOR inhibition: A promising strategy for stabilization of atherosclerotic plaques. Atherosclerosis 233: 601–607, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Martinez, I., D.J. Perdicaro, A.W. Brown, S. Hammons, T.J. Carden, T.P. Carr, K.M. Eskridge and J. Walter . Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl. Environ. Microbiol. 79: 516–524, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Martin-Timon, I., C. Sevillano-Collantes, A. Segura-Galindo and F.J.D. Canizo-Gomez . Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?, World J. Diabetes 5: 444–470, 2014. Crossref, MedlineGoogle Scholar
    • Nagy, C. and E. Einwallner . Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J. Vis. Exp. 131: 56672, 2018. Google Scholar
    • Nicholson, J.K., E. Holmes, J. Kinross, R. Burcelin, G. Gibson, W. Jia and S. Pettersson . Host-gut microbiota metabolic interactions. Science 336: 1262–1267, 2012. Crossref, Medline, Web of ScienceGoogle Scholar
    • Noureldein, M.H. and A.A. Eid . Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb. Pathog. 118: 98–104, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ohira, H., W. Tsutsui and Y. Fujioka . Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis?, J. Atheroscler. Thromb. 24: 660–672, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Pakala, R., E. Stabile, G.J. Jang, L. Clavijo and R. Waksman . Rapamycin attenuates atherosclerotic plaque progression in apolipoprotein E knockout mice: Inhibitory effect on monocyte chemotaxis. J. Cardiovasc. Pharmacol. 46: 481–486, 2005. Crossref, Medline, Web of ScienceGoogle Scholar
    • Paoletti, R., C. Bolego, A. Poli and A. Cignarella . Metabolic syndrome, inflammation and atherosclerosis. Vasc. Health Risk Manag. 2: 145–152, 2006. Crossref, MedlineGoogle Scholar
    • Park, J.E., M. Miller, J. Rhyne, Z. Wang and S.L. Hazen . Differential effect of short-term popular diets on TMAO and other cardio-metabolic risk markers. Nutr. Metab. Cardiovasc. Dis. 29: 513–517, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Quan, X., L. Zhang, Y. Li and C. Liang . TCF2 attenuates FFA-induced damage in islet beta-cells by regulating production of insulin and ROS. Int. J. Mol. Sci. 15: 13317–13332, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Rivera, M.E., E.S. Lyon, M.A. Johnson and R.A. Vaughan . Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes. Biochimie 168: 124–133, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Sang, S., X. Zhang, H. Dai, B.X. Hu, H. Ou and L. Sun . Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl River Delta, China. Sci. Rep. 8: 17317, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Simic, I. and Z. Reiner . Adverse effects of statins — myths and reality. Curr. Pharm. Des. 21: 1220–1226, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Sonnenburg, J.L. and F. Backhed . Diet-microbiota interactions as moderators of human metabolism. Nature 535: 56–64, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Spencer, M.D., T.J. Hamp, R.W. Reid, L.M. Fischer, S.H. Zeisel and A.A. Fodor . Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140: 976–986, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Steven, S., K. Frenis, M. Oelze, S. Kalinovic, M. Kuntic, M.T. Bayo Jimenez, K. Vujacic-Mirski, J. Helmstadter, S. Kroller-Schon, T. Munzel and A. Daiber . Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxid. Med. Cell. Longev. 2019: 7092151, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Tang, W.H., T. Kitai and S.L. Hazen . Gut microbiota in cardiovascular health and disease. Circ. Res. 120: 1183–1196, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Tunon, J., L. Badimon, M.L. Bochaton-Piallat, B. Cariou, M.J. Daemen, J. Egido, P.C. Evans, I.E. Hoefer, D.F.J. Ketelhuth, E. Lutgens, C.M. Matter, C. Monaco, S. Steffens, E. Stroes, C. Vindis, C. Weber and M. Back . Identifying the anti-inflammatory response to lipid lowering therapy: A position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovasc. Res. 115: 10–19, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Vergani, L., F. Baldini, M. Khalil, A. Voci, P. Putignano and N. Miraglia . New perspectives of S-Adenosylmethionine (SAMe) applications to attenuate fatty Acid-Induced steatosis and oxidative stress in hepatic and endothelial cells. Molecules 25: 4237, 2020. Crossref, Web of ScienceGoogle Scholar
    • Wang, L., Y. Zhao, Q. Zhou, C.L. Luo, A.P. Deng, Z.C. Zhang and J.L. Zhang . Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. Cultivar Eshu No. 8). J. Food Drug Anal. 25: 607–618, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wang, Y., X. Huang, Z. Ma, Y. Wang, X. Chen and Y. Gao . Ophiopogonin D alleviates cardiac hypertrophy in rat by upregulating CYP2J3 in vitro and suppressing inflammation in vivo. Biochem. Biophys. Res. Commun. 503: 1011–1019, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Xiong, Q., L. Zhu, F. Zhang, H. Li, J. Wu, J. Liang, J. Yuan, Y. Shi, Q. Zhang and Y. Hu . Protective activities of polysaccharides from Cipangopaludina chinensis against high-fat-diet-induced atherosclerosis via regulating gut microbiota in ApoE-deficient mice. Food Funct. 10: 6644–6654, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Xu, H.F., J. Luo, W.S. Zhao, Y.C. Yang, H.B. Tian, H.B. Shi and M. Bionaz . Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J. Dairy Sci. 99: 783–795, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Yin, F., G. Sharen, F. Yuan, Y. Peng, R. Chen, X. Zhou, H. Wei, B. Li, W. Jing and J. Zhao . TIP30 regulates lipid metabolism in hepatocellular carcinoma by regulating SREBP1 through the Akt/mTOR signaling pathway. Oncogenesis 6: e347, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Yu, X.H., D.W. Zhang, X.L. Zheng and C.K. Tang . Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res. 73: 65–91, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zagato, E., C. Pozzi, A. Bertocchi, T. Schioppa, F. Saccheri, S. Guglietta, B. Fosso, L. Melocchi, G. Nizzoli, J. Troisi, M. Marzano, B. Oresta, I. Spadoni, K. Atarashi, S. Carloni, S. Arioli, G. Fornasa, F. Asnicar, N. Segata, S. Guglielmetti, K. Honda, G. Pesole, W. Vermi, G. Penna and M. Rescigno . Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth. Nat. Microbiol. 5: 511–524, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhang, T., F. Huang, B. Li, C. Huang, C. Xu, K. Lin and D. Lin . NMR-based metabolomic analysis for the effects of Huiyang Shengji extract on rat diabetic skin ulcers. J. Ethnopharmacol. 261: 112978, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhang, T., J. Huang, Y. Yi, X. Zhang, J.J. Loor, Y. Cao, H. Shi and J. Luo . Akt Serine/Threonine Kinase 1 Regulates de Novo Fatty Acid Synthesis through the Mammalian Target of Rapamycin/Sterol Regulatory Element Binding Protein 1 Axis in Dairy Goat Mammary Epithelial Cells. J. Agric. Food Chem. 66: 1197–1205, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhao, L., Q. Zhang, W. Ma, F. Tian, H. Shen and M. Zhou . A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct. 8: 4644–4656, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhou, Y., P. Rychahou, Q. Wang, H.L. Weiss and B.M. Evers . TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis. 6: e1631, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhu, X.A., L.F. Gao, Z.G. Zhang and D.K. Xiang . Down-regulation of miR-320 exerts protective effects on myocardial I-R injury via facilitating Nrf2 expression. Eur. Rev. Med. Pharmacol. Sci. 23: 1730–1741, 2019. Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!