Bile acid metabolism mediated by gut microbiota is significantly related to immunity regulation that plays an important role in the development and treatment of inflammatory bowel disease (IBD). Our previous study has demonstrated that Panax notoginseng saponins (PNS) alleviate colitis due to the regulation of T helper 17/Regulatory T cells (Th17/Treg) balance via gut microbiota. However, the effects and mechanism of PNS on colitis pertinent to bile acid metabolism mediated by gut microbiota remain elusive. This study aims to investigate the anti-colitis mechanism of PNS by regulating the Th17/Treg balance pertinent to gut microbiota–bile acid metabolism. Results showed that PNS significantly decreased the relative abundance of Allobaculum, Dubosiella, Muribaculum, and Alistipes, and up-regulated the relative contents of conjugated bile acids, such as TCA and TCDCA. Fecal microbiota transplantation (FMT) showed that the gut microbiota remodeled by PNS had a regulatory effect on bile acid metabolism, and up-regulated the relative contents of TCA and TCDCA, which alleviated IBD and promoted Treg cell expression invivo and in vitro. Taken together, PNS could reshape the profiling of gut microbiota to generate more TCA and TCDCA, which improve the balance of Th17/Treg to exert anti-IBD effects.
Accumulating evidence suggests that gut microbiota plays a crucial role in the development of metabolic diseases, especially type 2 diabetes mellitus (T2DM). The nutrient-rich resource Cornus Fructus (CF) showed curative effects on diabetes mellitus. However, the mechanism underlying its hyperglycemic activity remains obscure. Herein, the antidiabetic potential of four extracts from CF, including saponin (CTS), iridoid glycoside (CIG), tannin (CT), and alcohol extract (CCA) was evaluated in vivo. The results showed that all four extracts could increase the body weight, decrease the blood glucose levels, and elevate the glucose tolerance. Moreover, insulin sensitivity and lipid profile were significantly improved in fed mice. In the α-diversity index of samples, compared to the DM group, the diversity and richness of gut microbiota in mice to a certain extent were reduced in both CF extracts and Metformin (PC). Among them, there was statistical significance in PC (ACE, p=0.01) and CCA (ACE, p=0.01; chao1: p=0.04). Beta diversity showed the same trend as the UPGMA clustering trees, which revealed that CF extracts could improve intestinal homeostasis in T2DM mice. Also, CF extracts could elevate the production of short-chain fatty acids, as well as regulate the composition of gut microbiota. The key bacteria related to T2DM including Firmicutes, Bacteroides, Lactobacillus, and Clostridium were modulated by metformin and CF. Altogether, CF is a potential nutrient-rich candidate that can be used in functional foods for the treatment of T2DM, and the change of gut microbiota might be a novel mechanism underlying its hyperglycemic activity.
The coronavirus disease 2019 (COVID-19) spreads and rages around the world and threatens human life. It is disappointing that there are no specific drugs until now. The combination of traditional Chinese medicine (TCM) and western medication seems to be the current more effective treatment strategy for COVID-19 patients in China. In this review, we mainly discussed the relationship between COVID-19 and gut microbiota (GM), as well as the possible impact of TCM combined with western medication on GM in the treatment of COVID-19 patients, aiming to provide references for the possible role of GM in TCM against COVID-19. The available data suggest that GM dysbiosis did occur in COVID-19 patients, and the intervention of GM could ameliorate the clinical condition of COVID-19 patients. In addition, TCMs (e.g., Jinhua Qinggan granule, Lianhua Qingwen capsule, Qingfei Paidu decoction, Shufeng Jiedu capsule, Qingjin Jianghuo decoction, Toujie Quwen granules, and MaxingShigan) have been proven to be safe and effective for the treatment of COVID-19 in Chinese clinic. Among them, Ephedra sinica, Glycyrrhiza uralensis, Bupleurum chinense, Lonicera japonica,Scutellaria baicalensi, and Astragalus membranaceus are common herbs and have a certain regulation on GM, immunity, and angiotensin converting enzyme 2 (ACE2). Notably, Qingfei Paidu decoction and MaxingShigan have been demonstrated to modulate GM. Finally, the hypothesis of GM-mediated TCM treatment of COVID-19 is proposed, and more clinical trials and basic experiments need to be initiated to confirm this hypothesis.
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Traditional Chinese Medicine Constitution (TCMC) divides human beings into balanced (ping-he) constitution (PH) and unbalanced constitution. Yang-deficiency (yang-xu) constitution (YAX) is one of the most common unbalanced constitutions in Chinese general population, and it causes susceptibility to particular diseases. However, unbalanced constitutions can be regulated by Chinese medicine and lifestyle intervention in clinical practice. Gui-fu-di-huang-wan (GFDHW) is a well-known Chinese medicine with yang-invigorating activity and is regarded as improving YAX. In this study, 60 healthy YAX students selected from a prospective population of 5185 were enrolled in a randomized clinical trial and completed the study. We compared the gut microbiota and urinary metabolome between individuals with PH and those with YAX before and after one-month-intervention. Compared with the control group, the health status of the intervention group improved significantly, the YAX symptom score was reduced, and the efficacy remained high at the one-year follow-up. The gut microbiota of the healthy PH exhibited greater diversity, and significantly higher species were identified. Compared to PH group, YAX individuals showed increased abundance of Bacteroidetes and Bacteroides, also had higher levels of gut microbial-derived urinary metabolites. After one-month-intervention, both GFDHW treatment and lifestyle intervention enriched the diversity and modulated the structure in YAX. The intervention group also partially restored the microbiome and metabolome to healthy PH-like levels. Further, a microbiota co-occurrence network analysis showed that the metabolites enriched in YAX were correlated with microbial community structure. Taken together, our results suggest that Chinese medicine combined with lifestyle intervention benefits YAX individuals. Gut microbiota/metabolite crosstalk might be involved in the Chinese medicine-mediated effects.
Gut microbiota has been proven to play an important role in many metabolic diseases and cardiovascular disease, particularly atherosclerosis. Ophiopogonin D (OPD), one of the effective compounds in Ophiopogon japonicus, is considered beneficial to metabolic syndrome and cardiovascular diseases. In this study, we have illuminated the effect of OPD in ApoE knockout (ApoE−/−) mice on the development of atherosclerosis and gut microbiota. To investigate the potential ability of OPD to alleviate atherosclerosis, 24 eight-week-old male ApoE−/− mice (C57BL/6 background) were fed a high-fat diet (HFD) for 12 weeks, and 8 male C57BL/6 mice were fed a normal diet, serving as the control group. ApoE−/− mice were randomly divided into the model group, OPD group, and simvastatin group (n= 8). After treatment for 12 consecutive weeks, the results showed that OPD treatment significantly decreased the plaque formation and levels of serum lipid compared with those in the model group. In addition, OPD improved oral glucose tolerance and insulin resistance as well as reducing hepatocyte steatosis. Further analysis revealed that OPD might attenuate atherosclerosis through inhibiting mTOR phosphorylation and the consequent lipid metabolism signaling pathways mediated by SREBP1 and SCD1 in vivo and in vitro. Furthermore, OPD treatment led to significant structural changes in gut microbiota and fecal metabolites in HFD-fed mice and reduced the relative abundance of Erysipelotrichaceae genera associated with cholesterol metabolism. Collectively, these findings illustrate that OPD could significantly protect against atherosclerosis, which might be associated with the moderation of lipid metabolism and alterations in gut microbiota composition and fecal metabolites.
In Lung adenocarcinoma (ADC), Qi-Yin deficiency syndrome (QY) is the most common Traditional Chinese medicine (TCM) syndrome. This study aimed to investigate the diversity and composition of gut microbiota in ADC patients with QY syndrome. 90 stool samples, including 30 healthy individuals (H), 30 ADC patients with QY syndrome, and 30 ADC patients with another syndrome (O) were collected. Then, 16s-RNA sequencing was used to analyze stool samples to clarify the structure of gut microbiota, and linear discriminant analysis (LDA) effect size (LEfSe) was applied to identify biomarkers for ADC with QY syndrome. Logistic regression analysis was performed to establish a diagnostic model for the diagnosis of QY syndrome in ADC patients, which was assessed with the AUC. Finally, 20 fecal samples (QY: 10; O: 10) were analyzed with Metagenomics to validate the diagnostic model. The α diversity and β diversity demonstrated that the structure of gut microbiota in the QY group was different from that of the H group and O group. In the QY group, the top 3 taxonomies at phylum level were Firmicutes, Bacteroidetes, and Proteobacteria, and at genus level were Faecalibacterium, Prevotella_9, and Bifidobacterium. LEfSe identified Prevotella_9 and Streptococcus might be the biomarkers for QY syndrome. A diagnostic model was constructed using those 2 genera with the AUC = 0.801, similar to the AUC based on Metagenomics (0.842). The structure of gut microbiota in ADC patients with QY syndrome was investigated, and a diagnostic model was developed for the diagnosis of QY syndrome in ADC patients, which provides a novel idea for the understanding and diagnosis of TCM syndrome.
Smilax china L. is used not only as a kind of traditional Chinese herbal medicinal ingredients with various pharmacological properties, but also as food in certain parts of China. However, it is by far still unclear whether Smilax china L. polyphenols (SCP), as important bioactive constituents in Smilax china L., have effects on inflammatory bowel diseases (IBD). This study investigated the impact of SCP on the dextran sulfate sodium (DSS)-induced IBD and gut microbiota in mice. SCP treatments ameliorated typical symptoms of IBD as what was reflected through suppressing body weight loss, colonic shortening, intestinal barrier damage, and increasing intestinal disease activity index. SCP treatments simultaneously decreased the release of proinflammatory cytokines and oxidative stress, as well as promoted the release of anti-inflammatory factors. Furthermore, SCP ameliorated the ecological imbalance of gut microbiota and regulated the key bacteria associated with IBD (including Akkermansiaceae, Ruminococcaceae, Acidaminococcaceae, Muribaculaceae, and Anaeroplasmataceae). In general, SCP may improve DSS-induced IBD in mice by regulating inflammatory factors, inhibiting oxidative stress, reducing intestinal tissue damage, and regulating the ecological imbalance of intestinal microbiota. Thus, SCP might serve as a potential therapeutic agent against the inflammation-driven diseases.
Dietary capsaicin (CAP), the main irritant component in pepper, can reduce the incidence of diabetes, while metformin (MET) is a first-line oral hypoglycemic drug. The purpose of this study was to investigate whether CAP on the hypoglycemic effect of MET is pertinent to gut microbiota. The glucose and insulin tolerance of diabetic rats were monitored. The glycolipid metabolism was analyzed by detecting blood biochemical parameters. Liver pathological changes were observed by Hematoxylin eosin (HE) staining. The inflammatory cytokines and intestinal tight junction proteins were detected by RT-qPCR and Western blot. 16S rRNA sequencing was employed to analyze gut microbiota profiles. The results showed that CAP and MET co-treatment could significantly reduce fasting blood glucose, improve glucose tolerance, lessen liver injury and inflammatory infiltration, down-regulate inflammatory cytokines and up-regulate intestinal tight junction proteins in diabetic rats by comparing it with MET monotherapy. Moreover, CAP and MET co-treatment altered gut microbiota profiles by regulating microbials’ abundances such as Akkermansia. In conclusion, CAP showed the significant hypoglycemic effect of MET and remodulated gut microbiota profiles in diabetic rats.
Electroacupuncture (EA) is commonly used to treat cerebrovascular diseases. This study aimed to clarify the mechanisms of action of treatments of cerebral ischemic stroke from the perspective of gut microecology. We used a mouse model and cell cultures to investigate the effects of EA on the intestinal microflora in mice models of middle cerebral artery occlusion (MCAO) and the mechanisms underlying the antioxidant activities of metabolites. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota. Metabolomic analysis was performed to characterize the metabolic profile differences between the mice in the EA + MCAO and MCAO groups. Gavaging with feces relieved brain damage in mice that received EA (EA mice) more than in mice that did not (non-EA [NEA] mice). The gut microbial composition and metabolic profiles of the EA and NEA mice were different. In particular, the microbiota from the mice in the EA or EA-FMT groups generated more indole-3-propionic acid (IPA) than the microbiota from the mice in the MCAO or NEA-FMT groups. We confirmed that IPA binds to specific melatonin receptors (MTRs) in target cells and exerts antioxidant effects by adding MTR inhibitors or knocking out the MTR1 gene in vivo and in the oxygen and glucose deprivation/reperfusion models of N2a cell experiments. EA can prevent ischemic stroke by improving the composition of intestinal microbiota in MCAO mice. Moreover, this study reveals a new mechanism of intestinal flora regulation of stroke that differs from inflammation/immunity, namely gut microbiota regulates stroke by affecting IPA levels.
Ginger (Zingiber officinale Rosc.) is a traditional edible medicinal herb with a wide range of uses and long cultivation history. Fresh ginger (Zingiberis Recens Rhizoma; Sheng Jiang in Chinese, SJ) and dried ginger (Zingiberis Rhizoma; Gan Jiang in Chinese, GJ) are designated as two famous traditional Chinese herbal medicines, which are different in plant cultivation, appearances and functions, together with traditional applications. Previous researches mainly focused on the differences in chemical composition between them, but there was no systematical comparison on the similarity concerning research achievements of the two herbs. Meanwhile, ginger has traditionally been used for the treatment of gastrointestinal disorders, but so far, the possible interaction with human gut microbiota has hardly been considered. This review comprehensively presents similarities and differences between SJ and GJ retrospectively, particularly proposing them the significant differences in botany, phytochemistry and ethnopharmacology, which can be used as evidence for clinical application of SJ and GJ. Furthermore, the pharmacology of gut microbiota-related gastrointestinal benefits has also been discussed in order to explore better ways to prevent and treat gastrointestinal disorders, which can be used as a reference for further research.
Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM), which can lead to renal failure in diabetic patients. At present, the first-line drugs for DN are mainly the renin–angiotensin system (RAS) inhibitors or angiotensin receptor blockers, and the latest approved aldosterone receptor antagonist finerenone, which delay the progression of DN to end-stage renal disease (ESRD), but the therapeutic effect is still not ideal. With a history of thousands of years, traditional Chinese medicine (TCM) has rich experience in the treatment of DN. Based on the theory of TCM, the clinical treatment of DN mainly focuses on generating fluid and nourishing blood, nourishing Qi and Yin, detoxifying and detumescent. In recently years, the therapeutic effects and mechanisms of TCM prescription, Chinese herbal medicine, and its active components on DN have received extensive attention in new drug development. This paper reviews the research progress of the mechanism of TCM on DN.
Hyperuricemia (HUA) and its associated metabolic diseases seriously threaten human health, and commensal microbiota has been identified as one of the environmental triggers of HUA. The role of berberine (BBR) in the treatment of HUA has begun to receive attention in recent years. However, how BBR modulates the microbiota to slow HUA progression is unclear. In this study, we showed that BBR alleviated potassium oxonate (PO)-induced HUA in mice by suppressing the expression of xanthine oxidase (XOD) in the liver and urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidney. The BBR also improved renal inflammation by inhibiting the expression of TNF-α, IL-1β, and caspase-1. Subsequently, we evaluated whether the observed anti-HUA effects of BBR were associated with changes in gut microbial structure in mice. 16S rRNA sequencing data showed that BBR significantly altered the community compositional structure of the gut microbiota. Specifically, BBR enriched the abundance of Coprococcus, Bacteroides, Akkermansia, and Prevotella. Antibiotic treatment can reverse the anti-HUA effects of BBR that further supports the role of the gut microbiota. In conclusion, our study provides evidence that BBR ameliorates PO-induced HUA by modulating the gut microbiota.
The property theory is a unique principle instructing traditional Chinese doctors to prescribe proper medicines against diseases. As an essential part of it, the five-flavor theory catalogs various Chinese materia medicas (CMMs) into five flavors (sweet, bitter, sour, salty, and pungent) based on their taste and medical functions. Although CMM has been successfully applied in China for thousands of years, it is still a big challenge to interpret CMM flavor via modern biomarkers, further deepening its elusiveness. Herein, to identify the correlation between gut microbiota and CMM flavor, we selected 14 CMMs with different flavors to prepare their aqueous extracts, quantified the contained major chemical components, and then performed full-length 16S rRNA sequencing to analyze the gut microbiota of C57BL/6 mice administrated with CMM extracts. We found that flavones, alkaloids, and saponins were the richest components for sweet-, bitter-, and pungent-flavored CMMs, respectively. Medicines with merged flavors (bitter-pungent and sweet-pungent) displayed mixed profiles of components. According to gut microbial analysis, modulation of CMMs belonging to the same flavor on the taxonomic classification was inconsistent to an extent, while the functional sets of gut microbiota, co-abundance gene groups (CAGs), strongly and differentially responded to distinct flavors. Moreover, these correlations were in line with their pharmacological actions. Therefore, the gut microbial functional sets (CAGs) could act as the possible indicator to reflect CMM flavor, rather than the composition of microbial community.
Ulcerative colitis (UC) has become a global epidemic, and the lack of an effective cure highlights the necessity and urgency to explore novel therapies. Sijunzi Decoction (SJZD), a classical Chinese herbal formula, has been comprehensively applied and clinically proven effective in treating UC; however, the pharmacological mechanism behind its therapeutic benefits is largely obscure. Here, we find that SJZD can restore microbiota homeostasis and intestinal barrier integrity in DSS-induced colitis. SJZD significantly alleviated the colonic tissue damage and improved the goblet cell count, MUC2 secretion, and tight junction protein expressions, which indicated enhanced intestinal barrier integrity. SJZD remarkedly suppressed the abundance of phylum Proteobacteria and genus Escherichia-Shigella, which are typical features of microbial dysbiosis. Escherichia-Shigella was negatively correlated with body weight and colon length, and positively correlated with disease activity index and IL-1β. Furthermore, through gut microbiota depletion, we confirmed that SJZD exerted anti-inflammatory activities in a gut microbiota-dependent manner, and fecal microbiota transplantation (FMT) validated the mediating role of gut microbiota in the SJZD treatment of UC. Through gut microbiota, SJZD modulates the biosynthesis of bile acids (BAs), especially tauroursodeoxycholic acid (TUDCA), which has been identified as the signature BA during SJZD treatment. Cumulatively, our findings disclose that SJZD attenuates UC via orchestrating gut homeostasis in microbial modulation and intestinal barrier integrity, thus offering a promising alternative approach to the clinical management of UC.
Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10−∕−). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-α levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10−∕− mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.
Rhizoma coptidis (CR) is traditionally used for treating gastrointestinal diseases. Wine-processed CR (wCR), zingiber-processed CR (zCR), and evodia-processed CR (eCR) are its major processed products. However, the related study of their specific mechanisms is very limited, and they need to be further clarified. The aim of this study is to compare the intervening mechanism of wCR/zCR/eCR on rats via faecal metabolomics and 16S rDNA gene sequencing analysis. First, faecal samples were collected from the control and CR/wCR/zCR/eCR groups. Then, a metabolomics analysis was performed using UHPLC-Q/TOF-MS to obtain the metabolic profile and significantly altered metabolites. The 16S rDNA gene sequencing analysis was carried out to analyze the composition of gut microbiota and screen out the significantly altered microbiota at the genus level. Finally, a pathway enrichment analysis of the significantly altered metabolites via the KEGG database and a functional prediction of relevant gut microbes based on PICRUSt2 software were performed in combination. Together with the correlation analysis between metabolites and gut microbiota, the potential intervening mechanism of wCR/zCR/eCR was explored. The results suggested that wCR played a good role in maintaining immune homeostasis, promoting glycolysis, and reducing cholesterol; zCR had a better effect on protecting the integrity of the intestinal mucus barrier, preventing gastric ulcers, and reducing body cholesterol; eCR was good at protecting the integrity of the intestinal mucus barrier and promoting glycolysis. This study scientifically elucidated the intervening mechanism of wCR/zCR/eCR from the perspective of faecal metabolites and gut microbiota, providing a new insight into the processing mechanism research of Chinese herbs.
Coptis chinensis Franch (RC), has historically been used for the treatment of “Xiao Ke” and “Xia Li” symptoms in China. “Xia Li” is characterized by abdominal pain and diarrhea, which are similar to the clinical symptoms of ulcerative colitis (UC). For the first time, this study aims to compare the anti-colitis effects of berberine (BBR) and total RC alkaloids (TRCA) and investigate the underlying metabolites and gut microbiota biomarkers. Metabolomics results showed that several colitis-related biomarkers, including lysophosphatidyl ethanolamine, lysophosphatidylcholine, scopolamine-methyl-bromide, N1-methyl-2-pyridone-5-carboxamide, 4-hydroxyretinoic acid, and malic acid, were significantly improved in model mice after BBR and TRCA treatments. High-dose BBR and TRCA treatments reversed the mouse colon shortening caused by dextran sodium sulfate (DSS), alleviated bowel wall swelling, and reduced inflammatory cell infiltration. BBR and TRCA restored the damaged mucosa integrity in colitis mice by upregulating claudin 1 and occludin, preventing colon epithelium apoptosis by inhibiting the cleavage of caspase 3. Additionally, BBR and TRCA significantly decreased the richness of the pathogenic bacteria Bacteroides acidifaciens but increased the abundance of the probiotic Lactobacillus spp. Notably, TRCA exhibited superior anti-colitis effects to those of BBR. Thus, this agent warrants further study and application in the treatment of inflammatory bowel disease in the clinic.
Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.
There have been numerous studies investigating the impact of acupuncture and/or moxibustion on the gut microbiota, but the results have been inconclusive. Therefore, we conducted a systematic review and meta-analysis that included both preclinical and clinical studies to assess the current evidence regarding the effects of acupuncture on gut microbiota changes. We collected relevant studies from EMBASE and PubMed, collected outcomes including diversity and relative abundance measures of the gut microbiome, and the summarized effect estimates were calculated using the ratio of means (ROM) with 95% confidence intervals. Our analysis identified three clinical studies and 20 preclinical studies, encompassing various diseases and models, including colitis and obesity. The pooled results indicated no significant difference in alpha diversity changes between treatment groups and controls, except for the Simpson index measure, which was significantly higher in the treatment groups. Additionally, the pooled results showed an increase in the Firmicutes and a decrease in the Bacteroidetes in the treatment groups, along with increases in the Lactobacillus and Ruminococcus genera. These findings suggest acupuncture treatment can target the modification of specific phyla and genera of gut microbiota. However, it is important to note that the effects of acupuncture on the gut microbiome are heterogeneous across studies, particularly in different disease models.
Please login to be able to save your searches and receive alerts for new content matching your search criteria.