World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Decoherence in two-dimensional quantum walks with two- and four-state coins

    https://doi.org/10.1142/S0217732321502102Cited by:1 (Source: Crossref)

    Two-dimensional quantum walks using a two-state coin have simpler experimental implementation than two-dimensional quantum walks using a four-state coin. However, decoherence occurs inevitably during the evolution of quantum walks due to the coupling between the quantum systems and their environment. Thus, it is interesting to investigate the robustness against decoherence for two- and four-state two-dimensional quantum walks. Here, we investigate the effects of the decoherence on two- and four-state two-dimensional quantum walks produced by the broken-link-type noise and compare their robustness against the broken-link-type noise. Specifically, we analyze the quantum correlation between the two spatial dimensions x and y by using measurement-induced disturbance for the two-state quantum walks, i.e. the alternate walk and the Pauli walk, and the four-state quantum walks, i.e. the Grover, Hadamard and Fourier walks, respectively. Our analysis shows that the two-state walks are more robust against the broken-link-type noise than the four-state walks.

    References

    • 1. A. Ambainis, SIGACT News 35, 22 (2004). Google Scholar
    • 2. A. Ambainis, Proc. 45th Annual IEEE Symp. Foundations of Computer Science (FOCS’04) (2004), pp. 22–31. Google Scholar
    • 3. A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009). ISI, ADSGoogle Scholar
    • 4. N. B. Lovett, S. Cooper, M. Everitt, M. Trevers and V. Kendon, Phys. Rev. A 81, 042330 (2010). ISI, ADSGoogle Scholar
    • 5. M. S. Underwood and D. L. Feder, Phys. Rev. A 82, 042304 (2010). ISI, ADSGoogle Scholar
    • 6. C. M. Chandrashekar and R. Laflamme, Phys. Rev. A 78, 022314 (2008). ISI, ADSGoogle Scholar
    • 7. C. M. Chandrashekar, Phys. Rev. A 83, 022320 (2011). ISI, ADSGoogle Scholar
    • 8. T. Kitagawa, M. S. Rudner, E. Berg and E. Demler, Phys. Rev. A 82, 033429 (2010). ISI, ADSGoogle Scholar
    • 9. S. K. Goyal and C. M. Chandrashekar, J. Phys. A: Math. Theor. 43, 235303 (2010). ISI, ADSGoogle Scholar
    • 10. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou and R. Han, Phys. Rev. A 67, 042316 (2003). ISI, ADSGoogle Scholar
    • 11. C. A. Ryan, M. Laforest, J. C. Boileau and R. Laflamme, Phys. Rev. A 72, 062317 (2005). ISI, ADSGoogle Scholar
    • 12. D. Lu, J. Zhu, P. Zou, X. Peng, Y. Yu, S. Zhang, Q. Chen and J. Du, Phys. Rev. A 81, 022308 (2010). ISI, ADSGoogle Scholar
    • 13. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber and T. Schaetz, Phys. Rev. Lett. 103, 090504 (2009). ISI, ADSGoogle Scholar
    • 14. F. Zahringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt and C. F. Roos, Phys. Rev. Lett. 104, 100503 (2010). ISI, ADSGoogle Scholar
    • 15. M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik and A. G. White, Phys. Rev. Lett. 104, 153602 (2010). ISI, ADSGoogle Scholar
    • 16. A. Peruzzo et al., Science 329, 1500 (2010). ISI, ADSGoogle Scholar
    • 17. A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gabris, I. Jex and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011). ISI, ADSGoogle Scholar
    • 18. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi and R. Osellame, Phys. Rev. Lett. 108, 010502 (2012). ISI, ADSGoogle Scholar
    • 19. K. Karski, L. Foster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede and A. Widera, Science 325, 174 (2009). ISI, ADSGoogle Scholar
    • 20. Y. Aharonov, L. Davidovich and N. Zagury, Phys. Rev. A 48, 1687 (1993). ISI, ADSGoogle Scholar
    • 21. E. Farhi and S. Gutmann, Phys. Rev. A 58, 915 (1998). ISI, ADSGoogle Scholar
    • 22. A. Romanelli, A. C. S. Schifino, R. Siri, G. Abal, A. Auyuanet and R. Donangelo, Phys. A 338, 395 (2004). ISIGoogle Scholar
    • 23. N. Konno, Quantum Inf. Process. 1, 345 (2002). ISIGoogle Scholar
    • 24. S. Venegas-Andraca, J. Ball, K. Burnett and S. Bose, New J. Phys. 7, 221 (2005). ISIGoogle Scholar
    • 25. N. Konno, Quantum Potential Theory, Lecture Notes in Mathematics, Vol. 1954 (Springer-Verlag, 2008), p. 309. Google Scholar
    • 26. S. E. Venegas-Andraca, Quantum Walks for Computer Scientists (Morgan and Claypool, 2008). Google Scholar
    • 27. M. Bednarska, A. Grudka, P. Kurzynski, T. Luczak and A. Wojcik, Phys. Lett. A 317, 21 (2003). ISI, ADSGoogle Scholar
    • 28. W. Adamczak, K. Andrew, L. Bergen, D. Ethier, P. Hernberg, J. Lin and C. Tamon, Int. J. Quantum. Inform. 5, 781 (2007). Link, ISIGoogle Scholar
    • 29. T. T. D. Mackay, S. Bartlett, L. Stephenson and B. Sanders, J. Phys. A 35, 2745 (2002). ADSGoogle Scholar
    • 30. I. Carneiro, M. Loo, X. Xu, M. Gerard, V. Kendon and P. Knight, New J. Phys. 7, 156 (2005). ISIGoogle Scholar
    • 31. Y. Omar, N. Paunkovic, L. Sheridan and S. Bose, Phys. Rev. A 74, 042304 (2006). ISI, ADSGoogle Scholar
    • 32. K. Watabe, N. Kobayashi, M. Katori and N. Konno, Phys. Rev. A 77, 062331 (2008). ISI, ADSGoogle Scholar
    • 33. C. Moore and A. Russell, Proc. 6th Int. Workshop on Randomization and Approximation Techniques (RANDOM 2002), Lecture Notes in Computer Science, Vol. 2483, eds. J. D. P. RolimS. Vadhan (Springer-Verlag, 2002), pp. 164–178. Google Scholar
    • 34. F. L. Marquezino, R. Portugal, G. Abal and R. Donangelo, Phys. Rev. A 77, 042312 (2008). ISI, ADSGoogle Scholar
    • 35. V. Kendon and B. Tregenna, Phys. Rev. A 67, 042315 (2003). ISI, ADSGoogle Scholar
    • 36. G. P. Berman, D. I. Kamenev, R. B. Kassman, C. Pineda and V. I. Tsifrinovich, Int. J. Quantum Inf. 1, 51 (2003). Link, ISIGoogle Scholar
    • 37. M. Mohseni, P. Rebentrost, S. Lloyd and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008). ISI, ADSGoogle Scholar
    • 38. T. A. Brun, H. A. Carteret and A. Ambainis, Phys. Rev. A 67, 032304 (2003). ISI, ADSGoogle Scholar
    • 39. A. Romanelli, R. Siri, G. Abal, A. Auyuanet and R. Donangelo, Phys. A 347c, 137 (2005). ISI, ADSGoogle Scholar
    • 40. F. W. Strauch, Phys. Rev. A 79, 032319 (2009). ISI, ADSGoogle Scholar
    • 41. S. Luo, Phys. Rev. A 77, 022301 (2008). ISI, ADSGoogle Scholar
    • 42. A. Schreiber, K. N. Cassemiro, V. Potocek, A. Gábris, I. Jex and C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011). ISI, ADSGoogle Scholar
    • 43. A. Ahlbrecht, H. Vogts, A. H. Werner and R. F. Werner, J. Math. Phys. 52, 042201 (2011). ISIGoogle Scholar
    • 44. K. Rapedius and H. J. Korsch, Phys. Rev. A 86, 025601 (2012). ISI, ADSGoogle Scholar
    • 45. A. Alberti, W. Alt, R. Werner and D. Meschede, New J. Phys. 16, 123052 (2014). ISIGoogle Scholar
    • 46. M. Bruderer and M. B. Plenio, Phys. Rev. A 94, 062317 (2016). ISI, ADSGoogle Scholar
    • 47. C. Di Franco, M. Mc Gettrick and T. Busch, Phys. Rev. Lett. 106, 080502 (2011). ISI, ADSGoogle Scholar
    • 48. C. Di Franco, M. Mc Gettrick, T. Machida and T. Busch, Phys. Rev. A 84, 042337 (2011). ISI, ADSGoogle Scholar
    • 49. C. M. Chandrashekar, S. Banerjee and R. Srikanth, Phys. Rev. A 81, 062340 (2010). ISI, ADSGoogle Scholar
    • 50. C. M. Chandrashekar, arXiv:1103.2704. Google Scholar
    • 51. C. M. Chandrashekar and T. Busch, J. Phys. A: Math. Theor. 46, 105306 (2013). ISI, ADSGoogle Scholar
    • 52. A. C. Oliveira, R. Portugal and R. Donangelo, Phys. Rev. A 74, 012312 (2006). ISI, ADSGoogle Scholar
    • 53. B. Tregenna, W. Flanagan, R. Maile and V. Kendon, New J. Phys. 5, 83 (2003). ISIGoogle Scholar
    • 54. H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001). ISI, ADSGoogle Scholar
    • 55. B. R. Rao, R. Srikanth, C. M. Chandrashekar and S. Banerjee, Phys. Rev. A 83, 064302 (2011). ISI, ADSGoogle Scholar
    • 56. D. H. Jiang, J. Wang, X. Q. Liang, G. B. Xu and H. F. Qi, Int. J. Theor. Phys. 59, 436 (2020). ISIGoogle Scholar
    • 57. G. B. Xu and D. H. Jiang, Quantum Inf. Process. 20, 128 (2021). ISI, ADSGoogle Scholar
    • 58. G. Du, B. M. Zhou, C. G. Ma, S. Zhang and J. Y. Li, Int. J. Theor. Phys. 60, 1374 (2021). ISIGoogle Scholar
    • 59. M. M. Lin, D. W. Xue, Y. Wang and K. J. Zhang, Int. J. Theor. Phys. 60, 1237 (2021). ISIGoogle Scholar
    • 60. D. H. Jiang, Q. Z. Hu, X. Q. Liang and G. B. Xu, Int. J. Theor. Phys. 59, 1442 (2020). ISIGoogle Scholar
    • 61. Y. L. Xu, G. B. Xu and D. H. Jiang, Mod. Phys. Lett. B 34, 2050172 (2020). Link, ISI, ADSGoogle Scholar
    Remember to check out the Most Cited Articles!

    Boost your collection with these new physics books today!