Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of the Complexity Measures in the EEG of Schizophrenia Patients

    https://doi.org/10.1142/S0129065716500088Cited by:79 (Source: Crossref)

    Complexity measures have been enormously used in schizophrenia patients to estimate brain dynamics. However, the conflicting results in terms of both increased and reduced complexity values have been reported in these studies depending on the patients’ clinical status or symptom severity or medication and age status. The objective of this study is to investigate the nonlinear brain dynamics of chronic and medicated schizophrenia patients using distinct complexity estimators. EEG data were collected from 22 relaxed eyes-closed patients and age-matched healthy controls. A single-trial EEG series of 2min was partitioned into identical epochs of 20s intervals. The EEG complexity of participants were investigated and compared using approximate entropy (ApEn), Shannon entropy (ShEn), Kolmogorov complexity (KC) and Lempel–Ziv complexity (LZC). Lower complexity values were obtained in schizophrenia patients. The most significant complexity differences between patients and controls were obtained in especially left frontal (F3) and parietal (P3) regions of the brain when all complexity measures were applied individually. Significantly, we found that KC was more sensitive for detecting EEG complexity of patients than other estimators in all investigated brain regions. Moreover, significant inter-hemispheric complexity differences were found in the frontal and parietal areas of schizophrenics’ brain. Our findings demonstrate that the utilizing of sensitive complexity estimators to analyze brain dynamics of patients might be a useful discriminative tool for diagnostic purposes. Therefore, we expect that nonlinear analysis will give us deeper understanding of schizophrenics’ brain.