World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Solid Modeling II; Edited by C. Hoffmann, J. Rossignac and J. TurnerNo Access

A SURFACE INTERSECTION ALGORITHM BASED ON LOOP DETECTION

    https://doi.org/10.1142/S021819599100030XCited by:9 (Source: Crossref)

    A robust and efficient surface intersection algorithm that is implementable in floating point arithmetic, accepts surfaces algebraic or otherwise and which operates without human supervision is critical to boundary representation solid modeling. To the author's knowledge, no such algorithms has been developed. All tolerance-based subdivision algorithms will fail on surfaces with sufficiently small intersections. Algebraic techniques, while promising robustness, are presently too slow to be practical and do not accept non-algebraic surfaces. Algorithms based on loop detection hold promise. They do not require tolerances except those associated with machine associated with machine arithmetic, and can handle any surface for which there is a method to construct bounds on the surface and its Gauss map. Published loop detection algorithms are, however, still too slow and do not deal with singularities. We present a new loop detection criterion and discuss its use in a surface intersection algorithms. The algorithm, like other loop detection based intersection algorithms, subdivides the surfaces into pairs of sub-patches which do not intersect in any closed loops. This paper presents new strategies for subdividing surfaces in a way that causes the algorithms to run quickly even when the intersection curve(s) contain(s) singularities.

    Remember to check out the Most Cited Articles!

    Check out these titles in image analysis!