UNITARY TRANSFORMATION APPROACH FOR THE PHASE OF THE DAMPED DRIVEN HARMONIC OSCILLATOR
Abstract
Using the invariant operator method and the unitary transformation method together, we obtained discrete and continuous solutions of the quantum damped driven harmonic oscillator. The wave function of the underdamped harmonic oscillator is expressed in terms of the Hermite polynomial while that of the overdamped harmonic oscillator is expressed in terms of the parabolic cylinder function. The eigenvalues of the underdamped harmonic oscillator are discrete while that of the critically damped and the overdamped harmonic oscillators are continuous. We derived the exact phases of the wave function for the underdamped, critically damped and overdamped driven harmonic oscillator. They are described in terms of the particular solutions of the classical equation of motion.