Please login to be able to save your searches and receive alerts for new content matching your search criteria.
By using the conformal equivalence of f(R) gravity in vacuum and the usual Einstein theory with scalar-field matter, we derive the Hamiltonian of the linear cosmological scalar and tensor perturbations in f(R) gravity in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes as a Lewis–Riesenfeld phase.
We used dynamical invariant operator method to find the quantum mechanical solution of a harmonic plus inverse harmonic oscillator with time-dependent coefficients. The eigenvalue of invariant operator is obtained and is constant with time. We constructed lowering and raising operators from the invariant operator. The solution of Schrödinger equation is obtained using operator method. We have also used ladder operators to obtain various expectation values of the time-dependent system. The results in this manuscript are not only more general than the existing results in the literatures but also well match with others.
We investigated the coherent states of nonconservative harmonic oscillator with a singular perturbation. The invariant operator represented in terms of lowering and raising operators. We confirmed that if the difference between two eigenvalues, α and β, of coherent states is much larger than unity, the states |α> and |β> are approximately orthogonal to each another. We calculated the expectation values of various quantities such as invariant operator, Hamiltonian and mechanical energy in coherent state. The mechanical energy of the system described by the Kanai–Caldirola Hamiltonian decreased exponentially depending on γ as time goes by in coherent state.
The quantum states with discrete and continuous spectrum for the damped harmonic oscillator perturbed by a singularity have been investigated using invariant operator and unitary operator together. The eigenvalue of the invariant operator for ω0≤β/2 is continuous while for ω0>β/2 is discrete. The wave functions for ω0=β/2 expressed in terms of the Bessel function and for ω0<β/2 in terms of the Kummer confluent hypergeometric function. The convergence of the probability density is more rapid for over-damped harmonic oscillator than that of the other two cases due to the large damping constant.
Using the invariant operator method and the unitary transformation method together, we obtained discrete and continuous solutions of the quantum damped driven harmonic oscillator. The wave function of the underdamped harmonic oscillator is expressed in terms of the Hermite polynomial while that of the overdamped harmonic oscillator is expressed in terms of the parabolic cylinder function. The eigenvalues of the underdamped harmonic oscillator are discrete while that of the critically damped and the overdamped harmonic oscillators are continuous. We derived the exact phases of the wave function for the underdamped, critically damped and overdamped driven harmonic oscillator. They are described in terms of the particular solutions of the classical equation of motion.
The quantum states with continuous spectrum for the time-dependent harmonic oscillator perturbed by a singularity are investigated. This system does not oscillate while the system that has discrete energy eigenvalue does. Exact wave functions satisfying the Schrödinger equation for the system are derived using invariant operator and unitary operator together.