World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ELECTRONIC STRUCTURE CALCULATIONS FOR MoSe2 USING EXTENDED HUCKEL TIGHT-BINDING METHOD

    https://doi.org/10.1142/S0217984904006561Cited by:2 (Source: Crossref)

    To gain insight into the electronic properties of MoSe2 (molybdenum selenide, also known as drysdallite), electronic structure calculations, total and projected density of states, crystal orbital overlap population and Mulliken population analysis were performed. The calculated energy bands depict a semiconductor behavior with a direct gap (at K) of 0.91 eV and an indirect gap (from Γ to K) of 3.6 eV, respectively. Total and projected density of states provided information about the contribution from each orbital of each atom to the total density of states. Moreover, the bonding strength between some atoms within the unit cell was obtained. Mulliken population analysis corroborates the electron filling of the Mo dz2 orbitals in agreement with another experimental and theoretical results.