ELECTRONIC STRUCTURE CALCULATIONS FOR MoSe2 USING EXTENDED HUCKEL TIGHT-BINDING METHOD
Abstract
To gain insight into the electronic properties of MoSe2 (molybdenum selenide, also known as drysdallite), electronic structure calculations, total and projected density of states, crystal orbital overlap population and Mulliken population analysis were performed. The calculated energy bands depict a semiconductor behavior with a direct gap (at K) of 0.91 eV and an indirect gap (from Γ to K) of 3.6 eV, respectively. Total and projected density of states provided information about the contribution from each orbital of each atom to the total density of states. Moreover, the bonding strength between some atoms within the unit cell was obtained. Mulliken population analysis corroborates the electron filling of the Mo dz2 orbitals in agreement with another experimental and theoretical results.