World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217984923502457Cited by:2 (Source: Crossref)

Quantum information protocols are often designed in the ideal situation with no decoherence. However, in real setup, these protocols are subject to the decoherence and thus reducing fidelity of the measurement outcome. In this work, we analyze the effect of state-dependent bath on the quantum correlations and the fidelity of a single qubit teleportation. We model our system-bath interaction as qubits interacting with a common bath of bosons, and the state dependence of the bath is generated through a projective measurement on the joint state in thermal equilibrium. The analytic expressions for the time evolution of entanglement, discord and average fidelity of quantum teleportation are calculated. It is shown that due to the presence of initial system-bath correlations, the system maintains quantum correlations for long times. Furthermore, due to the presence of finite long-time entanglement of the quantum channel, the average fidelity is shown to be higher than its classical value.