World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DESIGN AND OPTIMIZATION OF SINGLE AND MULTIPLE-LOOP REVERSIBLE AND QUANTUM FEEDBACK CIRCUITS

    https://doi.org/10.1142/S0218126612500181Cited by:5 (Source: Crossref)

    The majority of work in reversible logic circuits has been limited to combinational logic. Researchers are now beginning to suggest designs for sequential circuits. In this paper we propose a new method to design and optimize feedback reversible logic circuits and a specific group of quantum logic circuits based on the reversible state transition table and genetic algorithms (GA). To show the efficiency of the proposed method, some reversible sequential elements such as D and T flip-flops (FFs), with and without clock and reset, and edge triggered FFs are designed. We have also extended our method to multiple loop feedback circuits. The proposed circuits are highly optimized using a GA synthesis tool that allows don't care values. Some of the designs in this paper are presented in other papers; however, the comparisons show that the quantum cost and number of garbage inputs/outputs are reduced efficiently by our method.

    This paper was recommended by Regional Editor Krishna Shenai.