World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Trust-Driven Placement Approach: A New Perspective on Design for Hardware Trust

    https://doi.org/10.1142/S0218126615501157Cited by:4 (Source: Crossref)

    During the last few years, hardware Trojan horses (HTHs) have become one of the most important threats to the security of very large scale integrated (VLSI) chips. Many efforts have been made to facilitate the process of HTH detection, mostly based on the power analysis of chips. The techniques would be more beneficial if trust-driven techniques are used during the system design. Whereas design for hardware trust (DFHT) is one of the fields of interest, most current approaches include ad-hoc and gate-level design techniques. This paper discusses the advantage of physical-level design approaches with integrated strategies for improving the HTH-detection probability. As a proof of concept, a placement technique is presented with the goal of enhancing the ability of HTH detection techniques based on local power signal analysis. Our results show that the background effects on power pads can be leveraged by a simple partitioning-based placement algorithm. Minimizing the background effects leads to a better Trojan-to-background-effect ratio and more (by about 1.7 times) Trojan detectability.

    This paper was recommended by Regional Editor Emre Salman.