World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Minimum Norm Least-Squares Solution in Reduction by Krylov Subspace Methods

    https://doi.org/10.1142/S0218126617500062Cited by:1 (Source: Crossref)

    In recent years, model order reduction (MOR) of interconnect system has become an important technique to reduce the computation complexity and improve the verification efficiency in the nanometer VLSI design. The Krylov subspaces techniques in existing MOR methods are efficient, and have become the methods of choice for generating small-scale macro-models of the large-scale multi-port RCL networks that arise in VLSI interconnect analysis. Although the Krylov subspace projection-based MOR methods have been widely studied over the past decade in the electrical computer-aided design community, all of them do not provide a best optimal solution in a given order. In this paper, a minimum norm least-squares solution for MOR by Krylov subspace methods is proposed. The method is based on generalized inverse (or pseudo-inverse) theory. This enables a new criterion for MOR-based Krylov subspace projection methods. Two numerical examples are used to test the PRIMA method based on the method proposed in this paper as a standard model.

    This paper was recommended by Regional Editor Emre Salman.