World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A 32-GS/s Front-End Sampling Circuit Achieving >39 dB SNDR for Time-Interleaved ADCs in 65-nm CMOS

    https://doi.org/10.1142/S0218126621501437Cited by:2 (Source: Crossref)

    This paper presents a 32-GS/s front-end sampling circuit (FESC) in 65-nm CMOS. The FESC is designed for a 32-channel time-interleaved analog-to-digital converter (ADC), and the 4×8 two-stage interleaving structure leads to a good trade-off between bandwidth and linearity. The analysis and cancellation of charge injection, clock feedthrough, and signal feedthrough are presented. Inductor peaking technique is adopted to extend the bandwidth of the buffer between the first and the second stage. Based on the simulation results, the proposed FESC consumes 136mW at 32 GS/s, and the signal-to-noise ratio (SNDR) is up to 39.55 dB at Nyquist input, achieving a state-of-the-art power efficiency.

    This paper was recommended by Regional Editor Piero Malcovati.