Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Design of ACS Architecture Using FinFET and CNTFET Devices for Low-Power Viterbi Decoder Using Asynchronous Techniques for Digital Communication Systems

    https://doi.org/10.1142/S0218126622500803Cited by:0 (Source: Crossref)

    Viterbi algorithm is the most popular algorithm used to decode the convolution code, but its computational complexity increases exponentially with the increasing constraint length due to a large number of Trellis transitions. However, high constraint length is necessary to improve the accuracy of the decoding process for the high rate convolution code. In particular, the Add-Compare-Select (ACS) module of the Viterbi Decoder will have large numbers of trellis states and trellis transitions with increased constraint lengths, which give rise to high hardware complexity and large power consumption. As the performance of the Viterbi decoder mainly depends on its efficient implementation of the ACS module, in the literature, several methods are presented for the implementation of ACS for the Viterbi decoder. The methods based on Precharge Half Buffer (PCHB) and Weak Conditioned Half Buffer, Shannon’s decomposition circuits, body-biased pseudo-NMOS logic and Quasi Delay Insensitive (QDI) timing model performance is analyzed. The methods are implemented using CMOS technology. In this paper, FinFET and CNTFET-based ACS implementation is performed. From the analysis, it has been found that the Carbon Nanotube-based implementation is better in performance when compared to the CMOS and FinFET technology. The proposed QDI model and retiming circuits for ACS block operate above 1GHz with high driving current and low power.

    This paper was recommended by Regional Editor Giuseppe Ferri.