World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IDEAL COSET INVARIANTS FOR SURFACE-LINKS IN ℝ4

    https://doi.org/10.1142/S0218216513500521Cited by:9 (Source: Crossref)

    In [Towards invariants of surfaces in 4-space via classical link invariants, Trans. Amer. Math. Soc.361 (2009) 237–265], Lee defined a polynomial [[D]] for marked graph diagrams D of surface-links in 4-space by using a state-sum model involving a given classical link invariant. In this paper, we deal with some obstructions to obtain an invariant for surface-links represented by marked graph diagrams D by using the polynomial [[D]] and introduce an ideal coset invariant for surface-links, which is defined to be the coset of the polynomial [[D]] in a quotient ring of a certain polynomial ring modulo some ideal and represented by a unique normal form, i.e. a unique representative for the coset of [[D]] that can be calculated from [[D]] with the help of a Gröbner basis package on computer.

    AMSC: 57Q45, 57M25, 57M27