IDEAL COSET INVARIANTS FOR SURFACE-LINKS IN ℝ4
Abstract
In [Towards invariants of surfaces in 4-space via classical link invariants, Trans. Amer. Math. Soc.361 (2009) 237–265], Lee defined a polynomial [[D]] for marked graph diagrams D of surface-links in 4-space by using a state-sum model involving a given classical link invariant. In this paper, we deal with some obstructions to obtain an invariant for surface-links represented by marked graph diagrams D by using the polynomial [[D]] and introduce an ideal coset invariant for surface-links, which is defined to be the coset of the polynomial [[D]] in a quotient ring of a certain polynomial ring modulo some ideal and represented by a unique normal form, i.e. a unique representative for the coset of [[D]] that can be calculated from [[D]] with the help of a Gröbner basis package on computer.