Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In [Towards invariants of surfaces in 4-space via classical link invariants, Trans. Amer. Math. Soc.361 (2009) 237–265], Lee defined a polynomial [[D]] for marked graph diagrams D of surface-links in 4-space by using a state-sum model involving a given classical link invariant. In this paper, we deal with some obstructions to obtain an invariant for surface-links represented by marked graph diagrams D by using the polynomial [[D]] and introduce an ideal coset invariant for surface-links, which is defined to be the coset of the polynomial [[D]] in a quotient ring of a certain polynomial ring modulo some ideal and represented by a unique normal form, i.e. a unique representative for the coset of [[D]] that can be calculated from [[D]] with the help of a Gröbner basis package on computer.
Carrell defined the fundamental biquandle of an oriented surface-link by a presentation obtained from its broken surface diagram, which is an invariant up to isomorphism of the fundamental biquandle. Ashihara gave a method to calculate the fundamental biquandle of an oriented surface-link from its marked graph diagram (ch-diagram). In this paper, we discuss the fundamental Alexander biquandles of oriented surface-links via marked graph diagrams, derived computable invariants and their applications to detect non-invertible oriented surface-links.
A. S. Lipson constructed two state models yielding the same classical link invariant obtained from the Kauffman polynomial F(a, u). In this paper, we apply Lipson's state models to marked graph diagrams of surface-links, and observe when they induce surface-link invariants.