World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPLEXITY-BASED ANALYSIS OF MUSCLE ACTIVATION DURING WALKING AT DIFFERENT SPEEDS

    https://doi.org/10.1142/S0218348X23500329Cited by:10 (Source: Crossref)

    In this research, we investigated the effect of changes in walking speed on variations of the complexity of electromyogram (EMG) signals recorded from the right and left legs of subjects. We specifically employed fractal theory and approximate entropy to analyze the changes in the complexity of EMG signals recorded from 13 subjects walked at 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 km/h on a flat surface. The results showed that by increasing of walking speed, the complexity of EMG signals decreases. The statistical analysis also indicated the significant effect of variations in walking speed on the variations of the complexity of EMG signals. This method analysis can be applied to other physiological signals of humans (e.g. electroencephalogram (EEG) signals) to investigate the effect of walking speed on other organs’ activations (e.g. brain).