World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Regular ArticleFree Access

PHYSICS-INFORMED DEEP AI SIMULATION FOR FRACTAL INTEGRO-DIFFERENTIAL EQUATION

    https://doi.org/10.1142/S0218348X24500221Cited by:0 (Source: Crossref)

    Fractal integro-differential equations (IDEs) can describe the effect of local microstructure on a complex physical problem, however, the traditional numerical methods are not suitable for solving the new-born models with the fractal integral and fractal derivative. Here we show that deep learning can be used to solve the bottleneck. By the two-scale transformation, the fractal IDE is first approximately converted to its traditional integro-differential partner, which is further converted to a differential equation system by introducing an auxiliary variable to remove the integral operation. Moreover, a flexible adaptive technology is adopted to deal with the loss weights of a deep learning neural network. A fractal Volterra IDE is used to show the effectiveness and simplicity of this new physics-informed deep AI simulation model. All results indicate the AI simulation model has good robustness and convergence, and the fractal Volterra IDE might explore the different properties of viscoelasticity for a porous medium.