Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CALCULUS ON FRACTAL SUBSETS OF REAL LINE — I: FORMULATION

    Fractals01 Mar 2009

    A new calculus based on fractal subsets of the real line is formulated. In this calculus, an integral of order α, 0 < α ≤ 1, called Fα-integral, is defined, which is suitable to integrate functions with fractal support F of dimension α. Further, a derivative of order α, 0 < α ≤ 1, called Fα-derivative, is defined, which enables us to differentiate functions, like the Cantor staircase, "changing" only on a fractal set. The Fα-derivative is local unlike the classical fractional derivative. The Fα-calculus retains much of the simplicity of ordinary calculus. Several results including analogues of fundamental theorems of calculus are proved.

    The integral staircase function, which is a generalization of the functions like the Cantor staircase function, plays a key role in this formulation. Further, it gives rise to a new definition of dimension, the γ-dimension.

    Spaces of Fα-differentiable and Fα-integrable functions are analyzed. Analogues of Sobolev Spaces are constructed on F and Fα-differentiability is generalized using Sobolev-like construction.

    Fα-differential equations are equations involving Fα-derivatives. They can be used to model sublinear dynamical systems and fractal time processes, since sublinear behaviors are associated with staircase-like functions which occur naturally as their solutions. As examples, we discuss a fractal-time diffusion equation, and one-dimensional motion of a particle undergoing friction in a fractal medium.

  • articleNo Access

    CALCULUS ON FRACTAL SUBSETS OF REAL LINE — II: CONJUGACY WITH ORDINARY CALCULUS

    Fractals01 Sep 2011

    Calculus on fractals, or Fα-calculus, developed in a previous paper, is a calculus based fractals F ⊂ R, and involves Fα-integral and Fα-derivative of orders α, 0 < α ≤ 1, where α is the dimension of F. The Fα-integral is suitable for integrating functions with fractal support of dimension α, while the Fα-derivative enables us to differentiate functions like the Cantor staircase. Several results in Fα-calculus are analogous to corresponding results in ordinary calculus, such as the Leibniz rule, fundamental theorems, etc. The functions like the Cantor staircase function occur naturally as solutions of Fα-differential equations. Hence the latter can be used to model processes involving fractal space or time, which in particular include a class of dynamical systems exhibiting sublinear behaviour.

    In this paper we show that, as operators, the Fα-integral and Fα-derivative are conjugate to the Riemann integral and ordinary derivative respectively. This is accomplished by constructing a map ψ which takes Fα-integrable functions to Riemann integrable functions, such that the corresponding integrals on appropriate intervals have equal values. Under suitable conditions, a restriction of ψ also takes Fα-differentiable functions to ordinarily differentiable functions such that their values at appropriate points are equal. Further, this conjugacy is generalized to one between Sobolev spaces in ordinary calculus and Fα-calculus.

    This conjugacy is useful, among other things, to find solutions to Fα-differential equations: they can be mapped to ordinary differential equations, and the solutions of the latter can be transformed back to get those of the former. This is illustrated with a few examples.

  • articleFree Access

    PHYSICS-INFORMED DEEP AI SIMULATION FOR FRACTAL INTEGRO-DIFFERENTIAL EQUATION

    Fractals01 Jan 2024

    Fractal integro-differential equations (IDEs) can describe the effect of local microstructure on a complex physical problem, however, the traditional numerical methods are not suitable for solving the new-born models with the fractal integral and fractal derivative. Here we show that deep learning can be used to solve the bottleneck. By the two-scale transformation, the fractal IDE is first approximately converted to its traditional integro-differential partner, which is further converted to a differential equation system by introducing an auxiliary variable to remove the integral operation. Moreover, a flexible adaptive technology is adopted to deal with the loss weights of a deep learning neural network. A fractal Volterra IDE is used to show the effectiveness and simplicity of this new physics-informed deep AI simulation model. All results indicate the AI simulation model has good robustness and convergence, and the fractal Volterra IDE might explore the different properties of viscoelasticity for a porous medium.