Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CALCULUS ON FRACTAL SUBSETS OF REAL LINE — I: FORMULATION

    https://doi.org/10.1142/S0218348X09004181Cited by:134 (Source: Crossref)

    A new calculus based on fractal subsets of the real line is formulated. In this calculus, an integral of order α, 0 < α ≤ 1, called Fα-integral, is defined, which is suitable to integrate functions with fractal support F of dimension α. Further, a derivative of order α, 0 < α ≤ 1, called Fα-derivative, is defined, which enables us to differentiate functions, like the Cantor staircase, "changing" only on a fractal set. The Fα-derivative is local unlike the classical fractional derivative. The Fα-calculus retains much of the simplicity of ordinary calculus. Several results including analogues of fundamental theorems of calculus are proved.

    The integral staircase function, which is a generalization of the functions like the Cantor staircase function, plays a key role in this formulation. Further, it gives rise to a new definition of dimension, the γ-dimension.

    Spaces of Fα-differentiable and Fα-integrable functions are analyzed. Analogues of Sobolev Spaces are constructed on F and Fα-differentiability is generalized using Sobolev-like construction.

    Fα-differential equations are equations involving Fα-derivatives. They can be used to model sublinear dynamical systems and fractal time processes, since sublinear behaviors are associated with staircase-like functions which occur naturally as their solutions. As examples, we discuss a fractal-time diffusion equation, and one-dimensional motion of a particle undergoing friction in a fractal medium.