Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Selected Invited Papers from the International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT); Edited by Zahid Hasan MahmoodNo Access

A Study on Theoretical Performance of Graphene FET using Analytical Approach with Reference to High Cutoff Frequency

    https://doi.org/10.1142/S0219581X16400019Cited by:8 (Source: Crossref)

    This paper presents a detailed study of theoretical performance of graphene field effect transistor (GFET) using analytical approach. GFET shows promising performance in terms of faster saturation as well as extremely high cutoff frequency (3.9THz). A significant shift of the Dirac point as well as an asymmetrical ambipolar behavior is observed on the transfer characteristics. Similarly, an approximate symmetrical capacitance–voltage (CV) characteristics is obtained where it has guaranteed the consistency because it shows a significant saturation both in the accumulation and inversion region. In addition, a high transconductance of 6800uS at small channel length (20nm) along with high cutoff frequency (3.9THz) has been observed which demands for high speed field effect devices.