World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Color properties of the motion detectors projecting to the goldfish tectum: II. Selective stimulation of different chromatic types of cones

    https://doi.org/10.1142/S0219635215500053Cited by:3 (Source: Crossref)

    Sensitivity to the sign of contrast of direction-selective (DS) and orientation-selective (OS) ganglion cells (GCs) was investigated with selective stimulation of different chromatic types of cones. It was shown that the DS GCs that were classified with the use of achromatic stimuli as belonging to the ON type responded to selective stimulation of the long-wave cones as the ON type also, while the stimulation of middle-wave or short-wave cones elicited the OFF type responses. Character of the responses of DS GCs of the OFF type was exactly the opposite. OS GCs, which responded to achromatic stimuli as the ON–OFF type, responded to selective stimulation of the long-wave cones as the ON–OFF type as well, responded to middle-wave stimulation as the OFF type and to stimulation of short-wave cones it responded mainly as the ON type. At the same time, under color-selective stimulation, both DS and OS GCs retained the directional and orientation selectivity with the same preferred directions. The results obtained are in favor of the idea that the signals from the different chromatic types of cones are combined in the outer synaptic layer of the retina at the inputs of bipolar cells using sign-inverting and/or sign-conserving synapses, while specific spatial properties of motion detectors are formed in the inner synaptic layer.