Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    RECEPTIVE FIELD SIZES OF DIRECTION-SELECTIVE UNITS IN THE FISH TECTUM

    Responses of direction-selective (DS) ganglion cells (GCs) were recorded extracellularly from their axon terminals in the superficial layer of tectum opticum (TO) of immobilized cyprinid fish Carassius gibelio (Bloch, 1782). Excitatory receptive field (ERF) sizes of six types of DS GCs (ON and OFF cells, each of three distinct preferred directions) were evaluated on the basis of four different methods. In Method 1, the ERF width was calculated as a product of duration of spike train, generated in response to contrast edge moving across the ERF in preferred direction, and the velocity of the stimulus movement. The duration of spike train was estimated either as an interval between the first and the last spikes, or on the basis of the width of bell-shaped post-stimulus histogram of spike response according to its standard deviation. More precise size and position of the ERF can be outlined with edges moving in many different directions. So, in Method 2 diameter of the ERF was calculated on the basis of a mean distance of position of spike appearance from the center of ERF. Method 3 — ERF tracing by small contrast spot moving on several parallel tracks allowed estimation of the ERF width by number of spikes along each track and the ERF length by the duration of spike train. When tracing in two mutually orthogonal projections, the method also permitted calculation of the value of the temporal delay in the network from the same experiment. Canonical method (Method 4) used the ERF mapping with contrast spots flickering sequentially in different places of stimulation area. The length, width and orientation of the ERF were evaluated according to the two-dimensional equivalent of the standard deviation for this data set. All applied methods gave consistent estimates of ERF sizes — mean values of ERF sizes for all four procedures ranged between 4° and 4.8°. These angle values corresponded to retinal area of approximately 300 μm. Small ERFs of the fish DS GCs measured in the current study, indicate that the fish DS units should be classified as "fast" DS units, and are most likely involved in the detection of small objects moving in the surrounding environment.

  • articleNo Access

    Cardinal difference between the orientation-selective retinal ganglion cells projecting to the fish tectum and the orientation-selective complex cells of the mammalian striate cortex

    Responses from two types of orientation-selective units of retinal origin were recorded extracellularly from their axon terminals in the medial sublaminae of tectal retinorecipient layer of immobilized cyprinid fish Carassius gibelio. Excitatory and inhibitory interactions in the receptive field were analyzed with two narrow stripes of optimal orientation flashing synchronously, one in the center and the other in different parts of the periphery. The general pattern of results was that the influence of the remote peripheral stripe was inhibitory, irrespective of the polarity of each stripe (light or dark). In this regard, the orientation-selective ganglion cells of the fish retina differ from the classical orientation-selective complex cells of the mammalian cortex, where the remote paired stripes of the opposite polarity (one light and one dark) interact in a facilitatory fashion. The consequence of these differences may be a weaker lateral inhibition in the latter case in response to stimulation by periodic gratings, which may contribute to a better spatial frequency tuning in the visual cortex.

  • articleNo Access

    Detection and resolution of drifting gratings by motion detectors in the fish retina

    Fish have highly developed vision that plays an important role in detecting and recognizing objects in different forms of visually guided behavior. All of these behaviors require high spatial resolution. The theoretical limit of spatial resolution is determined by the optics of the eye and the density of photoreceptors. However, further in the fish retina, each bipolar cell may collect signals from tens of photoreceptors, and each ganglion cell may collect signals from tens to hundreds of bipolar cells. If we assume that the input signals in this physiological funnel are simply summed, then fine gratings that are still distinguishable at the level of cones should not differ from the homogeneous surface for the ganglion cells. It is therefore generally considered that the resolution of the eye is determined not by the density of cones, but by the density of ganglion cells. Given the size of the receptive field of ganglion cells, one can conclude that the resolving power at the output of the fish retina should be ten times worse than at its input. But this contradicts the results of behavioral studies, for, as it is known, fish are able to distinguish periodic gratings at the limit of resolution of the cones. Our electrophysiological studies with extracellular recording of responses of individual ganglion cells to the motion of contrast gratings of different periods showed that the acuity of ganglion cells themselves is much higher and is close to the limit determined by the density of cones. The contradiction is explained by the fact that ganglion cells are not linear integrators of the input signals, their receptive fields being composed of subunits with significantly smaller zones of signal summation where nonlinear retinal processing takes place.

  • articleNo Access

    Color properties of the motion detectors projecting to the goldfish tectum: I. A color matching study

    Responses of direction-selective and orientation-selective motion detectors were recorded extracellularly from the axon terminals of ganglion cells in the superficial layers of the tectum opticum of immobilized goldfish, Carassius gibelio (Bloch, 1782). Color stripes or edges moving on some color background (presented on the CRT monitor with known emission spectra of its phosphors) served as stimuli. It was shown that stimuli of any color can be more or less matched with the background by varying their intensities what is indicative of color blindness of the motion detectors. Sets of stimuli which matched the background proved to represent planes in the three-dimensional color space of the goldfish. A relative contribution of different types of cones to the spectral sensitivity was estimated according to orientation of the plane of color matches. The spectral sensitivity of any motion detector was shown to be determined mainly by long-wave cones with a weak negative (opponent) contributions of middle-wave and/or short-wave ones. This resulted in reduced sensitivity in the blue–green end of the spectrum, what may be considered as an adaptation to the aquatic environment where, because of the substantial light scattering of a blue–green light, acute vision is possible only in a red region of the spectrum.

  • articleNo Access

    Color properties of the motion detectors projecting to the goldfish tectum: II. Selective stimulation of different chromatic types of cones

    Sensitivity to the sign of contrast of direction-selective (DS) and orientation-selective (OS) ganglion cells (GCs) was investigated with selective stimulation of different chromatic types of cones. It was shown that the DS GCs that were classified with the use of achromatic stimuli as belonging to the ON type responded to selective stimulation of the long-wave cones as the ON type also, while the stimulation of middle-wave or short-wave cones elicited the OFF type responses. Character of the responses of DS GCs of the OFF type was exactly the opposite. OS GCs, which responded to achromatic stimuli as the ON–OFF type, responded to selective stimulation of the long-wave cones as the ON–OFF type as well, responded to middle-wave stimulation as the OFF type and to stimulation of short-wave cones it responded mainly as the ON type. At the same time, under color-selective stimulation, both DS and OS GCs retained the directional and orientation selectivity with the same preferred directions. The results obtained are in favor of the idea that the signals from the different chromatic types of cones are combined in the outer synaptic layer of the retina at the inputs of bipolar cells using sign-inverting and/or sign-conserving synapses, while specific spatial properties of motion detectors are formed in the inner synaptic layer.

  • articleNo Access

    Color- and motion-specific units in the tectum opticum of goldfish

    Extracellular recordings were performed from 69 units at different depths between 50 and 400μm below the surface of tectum opticum in goldfish. Using large field stimuli (86 visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent “red-ON/blue-green-OFF” type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent “blue-green-ON/red-OFF” type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of “color” and “motion”.

  • articleNo Access

    Color properties of the motion detectors projecting to the goldfish tectum: III. Color-opponent interactions in the receptive field

    Interactions between color channels (long-wave (L), middle-wave (M) and short-wave (S)) in the receptive field of direction-selective (DS) and orientation-selective (OS) ganglion cells (GCs) were investigated with combined selective stimulation of pairs of cone types (L and M, L and S, M and S). In the experiments with DS GCs of both ON and OFF types, it was shown that: (1) M and S channels were synergistic relative to each other and opponent to L channel. (2) Three-parameter signal (from L, M and S cones) is transformed to one-parameter signal at the output of DS GC, thus illustrating the principle of univariance. (3) In the experiments with OS GCs, it was shown that L and M channels were synergistic in the OFF-pathway, while the S channel was opponent to them. Our results suggested that photoreceptor synaptic connectivity of the bipolar cells hypothetically involved in the goldfish OS circuitry substantially differs from connectivity of bipolar cells presumably targeting DS GC. (4) To sum up, the results obtained on DS GCs confirmed the plausibility of proposed DS GC wiring diagrams; as to the OS circuitry of fish retina it still remains unclear and needs further investigation.