World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Improving the Shilling Attack Detection in Recommender Systems Using an SVM Gaussian Mixture Model

    https://doi.org/10.1142/S0219649219500114Cited by:7 (Source: Crossref)

    With recent advances in e-commerce platforms, the information overload has grown due to increasing number of users, rapid generation of data and items in the recommender system. This tends to create serious problems in such recommender systems. The increasing features in recommender systems pose some new challenges due to poor resilience to mitigate against vulnerable attacks. In particular, the recommender systems are more prone to be attacked by shilling attacks, which creates more vulnerability. A recommender system with poor detection of attacks leads to a reduced detection rate. The performance of the recommender system is thus affected with poor detection ability. Hence, in this paper, we improve the resilience against shilling attacks using a modified Support Vector Machine (SVM) and a machine learning algorithm. The Gaussian Mixture Model is used as a machine learning algorithm to increase the detection rate and it further reduces the dimensionality of data in recommender systems. The proposed method is evaluated against several result metrics, such as the recall rate, precision rate and false positive rate between different attacks. The results of the proposed system are evaluated against probabilistic recommender approaches to demonstrate the efficacy of machine learning language in recommender systems.